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AlmU'net--This paper considers the computation of all solutions to the inverse position problem for 
general six-revolute-joint manipulators. Instead of reducing the problem to one highly complicated 
input-output equation, we work with a system of I I very simple polynomial equations. Although the total 
degree of the system is large (1024), using the "method of the generic case" we show numerically that 
the generic number of solutions is 16, in agreement with previous works. Moreover. we present an elEcient 
nun~rical method for finding all 16 solutions, based on coe~icient-parameter polynomial continuation. We 
present a set of 41 test problems, on which the algorithm used an average of le-~ than l0 s of CPU time 
on an IBM 370-3090 in double precision FORTRAN. The methodology applies equally well to other 
problems in kinematics that can be formulated as polynomial systems. 

I. I N T R O D U C T I O N  

The inverse position problem For six-link manipulators, in which the hand position and orientation 
are given and the joint displacements are to be Found, is of  fundamental importance to computer 
controlled robots. It is also equivalent to the displacement analysis of  seven-link single-loop spatial 
mechanisms. While the problem can be expressed in closed-form For a variety of  special cases, such 
as when three consecutive axes intersect in a common point, this appears to be impossible For more 
general cases. Of  particular note is the most general 6R manipulator, which has six revolute joints 
(hence " 6 R ' )  and general link parameters. In the absence of  a closed-Form solution, a problem 
can be considered "solved" when two objectives have been met: (1) a tight upper bound on the 
number of  solutions has been established and (2) an efficient, numerically sound method For 
computing all solutions has been demonstrated, in this paper, we present a numerical approach, 
based on polynomial continuation, that addresses both objectives for the 6R problem. Moreover, 
the scope of  the methodology extends beyond this problem to a host of  other kinematic synthesis 
and analysis problems. This methodology is based on the "method of  the generic case", a rigorous 
computational technique for proving results about polynomial systems. This includes a general 
method for finding (and proving) tight upper bounds on the number of  solutions. 

The inverse position problem for manipulators has been studied for at least two decades, while 
the analysis of  spatial mechanisms extends back a century. A landmark treatise on the subject of 
6R manipulators came in 1968 when Pieper [I] developed closed-form solutions for the case where 
any three consecutive axes intersect in a common point. His work also included a polynomial 
formulation For the general 6R problem, but it had a total degree of  64,000. The first major 
accomplishment in the attack on the general 6R problem came in 1973 when Roth et al. [2] showed 
that there are at most 32 solutions.t Albala and Angeles addressed the problem in 1979 [3]. Then 
in 1980, Duffy and Crane [4] derived a 32nd degree polynomial For the problem. Duffy [5] also 
presented lower degree polynomials for a wide variety of  special cases involving prismatic or 
cylindric joints as well as for the 6R case with the consecutive axes parallel. In 1984, Tsai and 
Morgan [6] cast the problem as eight second-degree equations (total degree 256), which they solved 
numerically using polynomial continuation. Reformulated as a two-homogeneous system, the 
Tsai-Morgan system was reduced to two-homogeneous degree 96 by Morgan and Sommese [7] and 

tUnless there are an infinite number. This is a qualification we will generally omit. since it is always a possibility; for 
example, in singular configurations in which one or more axes may turn without affecting the hand position and 
orientation. 
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effectively to degree 64 in Ref. [8]. (See Appendix A.) Computations with both formulations 
supported the conjecture that, for genetic parameters, there are always 16 (sometimes complex) 
finite solutions. Motivated by this result and numerical solutions by Crane, Primrose [9] was the 
first (1986) to prove conclusively that there are at most 16 solutions by showing that the remaining 
16 solutions to the Duffy--Crane polynomial had pure imaginary parts. Finally, in 1988 Lee and 
Liang [10] were able to reduce the problem to a single 16th degree polynomial. This work was 
simplified and extended in Ref. [11]. Complementing these results, Manseur and Dory [12] have 
found an example where all 16 solutions are real. 

Although a 16th degree polynomial reduction of the 6R problem has been established, it 
does not necessarily follow that the fastest, most numerically stable numerical method for this 
problem must be based on such a reduction. Issues of algebraic stability, for example, have lead 
some researchers [I l] to evoke hundreds of digits of precision for portions of the computation. 
Further (numerical) analysis will be required to clarify which combinations of methods are most 
effective. 

Almost two decades have elapsed from the time that Pieper first considered the general 6R 
manipulator problem as a polynomial system until a tight bound on the number of solutions was 
firmly established. This indicates the difficulty in reducing even a moderately complicated 
polynomial system to a single polynomial of minimum degree. In this paper we use a methodology 
for general polynomial systems that can be used both to determine the generic number of solutions 
numerically and also to calculate all of the geometrically isolated? solutions. This methodology 
does not involve reducing the system to a single polynomial. It is instead based on new 
developments in polynomial continuation. We apply this general methodology to a new model 
for the 6R inverse position problem, presented in Section 2. In Section 3, we give an overview 
of polynomial continuation and the related polynomial theory, focusing on the recent develop- 
ments that have improved the method dramatically. Section 4 describes our code for solving 
the problem and documents its performance on a number of examples. Section 5 gives the 
conclusions. 

2. M O D E L L I N G  

We model the 6R manipulator problem using the Denavit-Hartcnburg formalism [13] (see Fig. 
I ). That is, each link is represented by the line along its joint axis and the common normal to the 
next joint axis. (In the case of parallel joints, any of the common normals can be chosen.) We place 
a unit vector z, along joint axis i and a unit vector xi + ~ along its common normal to joint axis i + I. 
(Boldface type denotes a vector in three-space.) A fixed vector x~ perpendicular to z~ defines a fixed 
reference frame, and an ¢nd-effector axis z7 is attached to link 6. The origin point O and the 
cndpoint P are defined as in Fig. !. Following the usual convention, each link has an offset d, along 
z, and a length a, along x, ,  ~. Also there is a twist angle ~, between z, and z, ÷ ~. The joint rotation 
0, is the angle between x, and xi + ~. The parameters d,, a,  % for i = ! . . . . .  6 are constants for a 
givcn 6R man~ulator, whereas 0~ . . . . .  06 are the variable joint angles. Now, given an end-effector 
position p = OP and end-effector orientation x,,  ZT, the problem is to find all the corresponding 
sets of joint angles (0t . . . . .  06), (In the equivalent 7R spatial mechanism problem, z, is the final 
joint axis and we wish to find the joint angles as z7 is rotated about z~.) 

We may formulate the problem as follows. (The symbols " - "  and " × " represent the vector 
scalar product and the vector cross product operations, respectively.) The unit lengths imply for 
i - - I  . . . . .  7 

z , ' z , - -  I. ( I )  

x , ' x , =  I. (2) 

~A solution is g¢ometricu/l)' isoluted i f  it is not part of  a positive-dimensional solution set (c.g. a curvc or surface of  
solutions). We can be assured of  finding only the geometrically isolated solutions using polynomial continuation (or 
any other general method). I f  a polynomial system does not have an infinite number o f  solutions, then every solution 
is geometrically isolated. A solution is said to be nonsingu/ar i f  the Jacobian matrix o f  the system at the solution is 
nonsingular. Nonsingular solutions are geometrically isolated, but the converse is not true. 
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Fig. I. Dcvanit-Hartcnburg notation for a 6R manipulator. 

The definition o f  x,+l as the c o m m o n  normal  to z, and z,+t gives for  i = I . . . . .  6 

x, + i" z~ = 0, (3) 

x, + i "z,+, = O. (4) 

The  definitions o f  the twist angles imply for i = 1 . . . . .  6, 

z,. z, + i = cos ~, (5) 

sin ~,,x,÷ ~ = z, x z,+l .  (6) 

Similarly, the joint  angle definitions imply for  i = I . . . . .  6 

x,. x, + i = cos 0, (7) 

sin 0,z,--  x, x x,+ i. (8) 

Finally, the endpoin t  posit ion can be compu ted  as 

6 

p = ~ (d,z,+a,x,÷,). (9) 
tin| 

Given x~,z~,xT,zT,p ,  this may  be viewed as a system o f  equat ions  for  the unknowns  x, ,z,  
i ffi 2 . . . . .  6 and 0, i = I . . . . .  6. We have more  equat ions  than  unknowns,  but  they can be shown 
to be consistent.  O u r  first act ion is to reduce the n u m b e r  o f  variables and  equat ions.  

Equat ions  ( ! ) - (9)  are basically just  the definitions o f  the usual D e n a v i t - H a r t e n b u r g  parameters .  
F rom these relations, one can easily write x,, z, in terms o f  x,_ ,, z,_ ~, 0, and thereby rederive the 
conventional  t r ans format ion  matr ix  formula t ion  o f  the problem.  We take an al ternat ive approach ,  
which is to first calculate x,, z, in equat ions  (!)--(6) and  (9) and  then evaluate  0, f rom equat ions  
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(7) and (8). That is, given all the joint axis directions and their common normals, we compute the 
joint angles as 

0, = tan- '  ( z ' -  x--' -x x'-~" ' / . (10) 
Xt " Xt ~- I / 

If the joint twists for links 1-5 are general, that is, if sin a, ~ 0, i = I . . . . .  5. then we can solve 
for x,+ ~ from equation (6): 

x,+, = (z, x zt+ ,)/sin ,,,. (! 1) 

From this and equations (i) and (5), equations (2)-(4) follow easily. Also, we can calculate z~ as 

z6 = sin ~z~ x x7 + cos ~6z7. (12) 

Defining the known quantity ~ as 

= p - d~z6 - a6x7 - d,z,, (13) 

a complete polynomial system of 12 equations in 12 unknowns z, i = 2, 3, 4. 5 is as follows: 

z , . z , = l ,  i = 2 , 3 , 4 , 5 ,  (14) 

z , ' z i+ ,=c~,  i = 1 , 2 . 3 , 4 , 5 ,  (15) 
5 

e,z, x z 2 +  ~ (d,z,+e,z, x z ,~ , )= fJ .  (16) 
i - 2  

where c, = cos ~, and e, = a,/sin a,(i = I . . . . .  5). Remember that z, is given and ze is computed in 
equation (12). (Note that x7 and z7 are also given.) This is the system of equations which we used 
for our computations. After solving for the joint axes z,, we find the common normals from 
equation (I I) and then the joint angles from equation (10). 

System ( 14)--(16) consists of two linear [equation (15) i = I and i = 5] and 10 quadratic equations, 
for a total degree of 2'0= 1024. Because we take z, = (0, 0, I), equation (15) simply sets the third 
component of :2 to be c,, so this variable can be easily eliminated. Thus, the system we actually 
submit to the numerical solver consists of I i equations in ! I unknowns. Note that the sparsity 
of the system is a plus in minimizing the cost of  function and Jacobian matrix evaluations. This 
sparcity could also be exploited to decrease the cost of solving linear systems involving the Jacobian 
matrix. Since we are mainly interested in general geometries, the restriction to nonzero twist angles 
is not viewed as a difficulty. For completeness, Appendix B shows how to write a similar system 
for a manipulator with parallel joints. 

3. P O L Y N O M I A L  THEORY AND P O L Y N O M I A L  CONTINUATION 

From now on we refer to the 6R inverse position problem as the " lPP".  In Section 3.1 we outline 
"'the method of the generic case", which is the basis from polynomial theory for our numerical 
technique. Then in Section 3.2 we present the numerical technique itself: "coefficient-parameter 
polynomial continuation". 

3. I. The method of  the generic case 

"The method of the generic case" refers to a mathematical theory analyzing the structure of the 
solution sets of  polynomial systems. Here we outline the basic ideas. The results are precisely stated 
and rigorously proven in Ref. [14]. We denote by C ~ the complex Euclidean space of dimension 
i, and by R' the real Euclidean space of dimension i. 

We begin with the assumption that we have a system of  polynomial equations F that varies with 
a set of parameters Q; thus, we have 

F(c[q], w) = O, (17) 

where w is a set of complex variables, w ¢ C',  q is a set of parameters, say q ¢ Q, and c is a set 
of analytic functions giving the coefficients of the polynomials in terms of  the parameters. Thus 
c[q] denotes an analytic map from the parameter space Q to the coefficient space, which we may 
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take to be some C ~. We need to have w ~ C" rather than w c R" for theoretical reasons, even if 
only real solutions have physical meaning. Similarly, we will assume Q is an open subset of 
some C j, although the theory allows much more general spaces. (See Section 4, discussion of 
"Part 2"' of the problem set, for a case in which complex solutions have physical meaning for the 
IPP.) 

We wish to talk about "possibly physical solutions". We make this precise as follows: we assume 
we have a particular collection of polynomial "side conditions", s(c[q], w) = 0; that is, additional 
polynomial equations that also vary with q and have w as the independent variable. We further 
assume that any solution obeying the side conditions cannot be a physical solution. The possibly 
physical solutions are those solutions to F(c[q], w ) =  0 that do not obey the side conditions 
s(c[q], w) = O. In any particular case, these possibly physical solutions may not be physical; for 
example, some of them may include imaginary numbers. We want the generic set of possibly 
physical solutions to be as small as possible. This will yield the tightest bound on the number of 
physical solutions. The best case occurs when there is a choice of parameters for which all the 
possibly physical solutions are physical, demonstrating that the bound cannot be any tighter. For 
the IPP we have such a tight bound, 16. 

In physical problems, it is natural to conceptualize q as being the set of physical parameters. 
However. often it is desirable to let q be derived from these parameters rather than take q be the 
physical parameters themselves. 

Regardless of the way in which q is defined, we have the following result: for all generic 
choices of q0 in Q, the structure of the solution set of F(c[qo], w) = 0 is the same. In practice, 
we identify a random choice of q0 from Q with a generic choice. Although this is not strictly 
correct mathematically, it is plausible and defensible. The structure of the solutions of 
F(c[q], w) = 0 includes such qualities as the number of geometrically isolated finite solutions, the 
number of geometrically isolated solutions at infinity, the type and dimensionality of positive- 
dimensional solution components, the number of geometrically isolated strictly imaginary solutions 
and strictly real solutions. Also, ifs(c[q], w) = 0 is a polynomial system that also varies with q and 
if a certain number of solutions of F(c[qo], w) = 0 also satisfy s(qo, w) = 0, then that same number 
of solutions to F(c[q], w) = 0 will also satisfy s(c[q], w) = 0 for any generic choice of q. 

Suppose that we numerically solve F(c[qo], w ) - - 0  for a randomly chosen qo. Then, with the 
qualifications that 

(I) qo is random instead of generic, 

and 

(2) the computational solution of F(c[qo], w) = 0 is subject to error, 

the revealed structure of the solution sets of generic F(c[q], w ) =  0 is rigorously proven. In 
particular, the number of nonsingular possibly physical solutions is determined. 

Since generic q are dense in Q, we obtain results for nongeneric systems from arguments about 
limits. (The arguments include some subtleties. See Ref. [14].) Thus, for example: 

• the number of geometrically isolated (nonsingular, respectively) finite solutions of 
a nongeneric F(c[q], w) = 0 is bounded above by the generic number, 

• the number of geometrically isolated (nonsingular, respectively) possibly physical 
solutions is bounded above by the generic number. 

In Section 4, we summarize the result of applying the method of the generic case to the IPP 
system developed in Section 2. In Appendix A we do this for the formulation of the IPP from Ref. 
[6]. In both cases a description of the solution set results, including a computational proof that 
there are exactly 16 (generic) possibly physical solutions. 

3.2. Coefficient-parameter polynomial continuation 

Continuation is the process of tracking solutions of a previously solved problem as its parameters 
are gradually changed to those of an unsolved target problem of similar form. Such an approach 
is particularly effective for solving systems of polynomial equations because of the completeness 
of the theory in this case. 
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"'Polynomial continuation" refers to methods for computing the full set of geometrically isolated 
solutions to systems of n polynomial equations in n unknowns using numerical continuation (path 
tracking) techniques. Polynomial continuation consists of two pans: 

(I) defining the continuation system, 
and 

(2) numerically computing the resulting continuation paths. 

We are focusing here on Part I. Part 2 is important, but reliable techniques of polynomial 
path tracking are available and they need not be customized to the specific problem being solved. 
Several approaches are surveyed in Refs [16, 17]. although we favor the predictor-corrector 
technique described in Ref. [17, Chap. 4] because it is customized to polynomial paths. See 
Ref. [18]. 

We use a theory of polynomial continuation called coefficient-parameter continuation, which we 
will outline briefly here. An elementary overview of polynomial continuation is given in Ref. [17], 
while Refs [18-21] summarize a number of recent developments. The theory of coefficient- 
parameter polynomial continuation is precisely developed in Ref. [14]. 

Consider a family of a polynomial systems of the form of equation (17). Suppose we let the 
parameters q be continuous functions of a dummy parameter t. Then the solutions of equation (17) 
will vary continuously with t. The continuation method consists of tracking solutions from an 
initial set of parameters qo, for which the solutions are known, to a target set qt. (These "tracked 
solutions" are called continuation paths.) Typically. we choose parameter formulas to be simple 
linear interpolation, such as 

H(w, t) - F(c[(l - t)qo + tq,]. w), (18) 

where t increases from 0 to I. We call this a coefficient-parameter continuation to distinguish it from 
coefcient continuation, in which the coefficients are interpolated directly. H(w, 0) is the start system 
and H(w, I ) is the target system. The continuation paths are collectively the solutions to H(w, t) = 0 
for 0~<t ~< I. 

Now we proceed as follows: we wish to construct a computer code to solve equation (17) for 
any choice of q = qt. We are interested in only the possibly physical solutions. Associated with 
equation (17) is a system of side conditions s(c[q], w)= 0 that picks out solutions that are not 
possibly physical, as discussed in Section 2. I. The first step of our technique is to choose qo from 
Q at random, and solver F(c[qo]. w)= O. 

We discard the solutions that satisfy s(qo, w) = 0 and save the rest. (For the IPP formulation 
given in Section 2, this amounts to discarding the solutions at infinity.) The solutions we have saved 
are the start points. Then we define the continuation system H(w, t) by condition (18). (There are 
a number of alternative ways to set up H, described in Refs [14, 21]. Note that here q0 consists of 
random complex numbers.) Each start point is a solution to the start system H(w, O)= O. 

In the second step of the methodology, we proceed, for any choice of q,, to track the continuation 
paths defined by equation (18) as t goes from 0 to I, beginning at each start point. The endpoints 
of these paths will include all the (geometrically isolated) possibly physical solutions of the target 
system. 

Since the first step (solving a random problem) is done only once, a moderately large degree 
system can be tolerated. For many problems in kinematics, we can expect the number of possibly 
physical solutions to be only a small fraction of the total, so that the computation cost in the second 
step will be significantly reduced over the first. See Section 4. 

4. N U M E R I C A L  R E S U L T S  

The con t inua t ion  system we use is equa t ion  (18) f rom Sect ion 3. where F is defined by equat ions  
( 14)-(I 6) and  the pa rame te r s  q are  the 20 cons tan t s  c, for  i = I -5 ,  e,, for i = I -5 .  d,. for  i = 2-5.  
z~. and  ~ (these last two accoun t ing  for three pa rame te r s  each),  respectively.  No te  that  these are  

~'A traditional continuation method can b¢ used. for which published computer codes are available; for example, 
CONSOL8T from Ref. [17] or POLSYS/HOMPACK from Ref. [16]. 
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Ta b le  !. R a n d o m  ¢oe~c ien t s  for  the [PP'2 s tar t  sys tem 

Parametez Real Part Imaginary Part 

c~ 0.6429~5654806024D + 0 0 . 8 1 ~ , 4 ~ 1 6 4 1 4 D  + 0 
c~ 0.L~a68800"&~88051D + 0 0.4k52,~5~k56~,Ik~D + 0 
c~ 0.2642,$,g$17449783D 4- 0 0.342483846,503455D + 0 
e, 0.126010863921692D + 0 0.~IkSg09176~1474D + 0 
cs 0.179,5603,56711590D + 0 0 . 8 7 0 9 1 6 6 ~ 7 D  + 0 
el 0.4962,54299763677D + 0 0.,54602~117413,18D + 0 
el 0.9,58341609741183D + 0 0.8474424199~42&D + 0 
e~ 0.064759,562277322D + 0 0.TI39T074,SI89T27D + 0 
e4 0.706319991204,509D + 0 0.121)09771~25g0D + 0 
es 0.4820"/9337580217D + 0 0.307430483491TTID + 0 
d~ 0.984138451804029D + 0 0 . 4 1 4 9 6 7 1 7 ~ D  + 0 
dr 0.353268870498141D + 0 0.38990922688T~h19D + 0 
d4 0.2043793503,50791D + 0 0.374294,529683539D - 2 
d~ 0.907681632783351D + 0 0.40,5209203447115D + 0 
: 6 .1  0.3,52598136811139D + 0 0.1168881443190(JID + 0 
z 6 . ~  0.53904248~24988D + 0 0 . 6 8 ~ 1 6 7 5 D  + 0 
: 6 .3  0.391154215376446D + 0 0.128900893181708D + 0 
/ / s .~  0.437312713587744D + 0 0.914780691~k57009D + o 
/ /6.~ 0.719086796332704D + 0 0.691791591267247D + 0 
/h~ . ,  0.94t279842398217D + 0 0.O0318,$,~O8956D - 01 

The  " D ' "  indicates  powers  o f  I0. T h u s  
0.374294529683539D - 2 

denotes  
0.374294529683539 x 10-: .  

not the "natural" parameters of the problem, which are a,, d,, a,, p, x7, and zT. Instead, the 
parameters we choose are derived from the natural parameters by the simple formulas given in 
Section 2. 

The start system parameters qo were cho~n as random complex numbers (given in Table I). This 
implements the "method of the generic case", discussed in Section 3. We solved this randomly 
chosen start system using a two-homogcncous version of the CONSOLST code from Ref. [i 7]. (See 
Refs [7, 8, 19, 21] for a discussion of the two-homogeneous approach.) Since the two-homogeneous 
Bczout number of the system is 320, wc thcrcfore tracked 320 paths for this computation. [We could 
have used a more traditional onc-homogeneous code (e.g. the original CONSOLST), in which case 
wc would have had to have tracked 1024 paths, the total degree number.] The run took about 
30 min of CPU time on an IBM 370-3090 in double precision FORTRAN. In this case, being at 
infinity rules out a solution as being possibly physical.'l" Of the 320 continuation path endpoints 
yielding solutions to this sytem, only 16 were finite (i.e. not at infinity). Therefore, the IPP system 
has no more than 16 finite (geometrically isolated) solutions for any choice of parameters. This 
computation amounts to a new proof of this important result. Aside from this theoretical result, 
we have used this computation to construct a continuation computer code to solve the IPP. 

Thus, defining the continuation system by condition (18) and using as start points the 16 finite 
solutions discovered in the computation discussed above, we can solve any IPP problem (defined 
by a choice of q, ) by path tracking the associated 16 paths. [As noted in Section 2, if any twist 
angle equals zero, we must use a modification of equations (14)--(16). See Appendix B.] We used 
the prcdictor-corrector path tracker from CONSOL8T [17] to compute the continuation paths. We 
call the resulting method lPP2. 

To test IPP2 we solved a collection of test problems (in five parts, as described below) and 
compared the results to the IPPI-64 method from Ref. [8]. IPPI-64 is discussed in Appendix B. 
We give both CPU and NFE values in Table 2. CPU denotes seconds of CPU time on an IBM 
370-3090 using double precision FORTRAN with the OPT(3) option. The CPU values, although 
of interest, should be viewed with some suspicion. They vary because of the time-sharing 
environment and other factors. (We experienced timer variations of several tenths of a second in 
rerunning sample problems.) The NFE value denotes "number of function evaluations". For the 
path tracker we are using, this is the number of function and Jacobian matrix evaluations and also 
the number of linear systems solved. Thus, it is a fairly good representation of the total 

+To implement the two-homogeneous presentation o f  our system, we must divide the variables into two groups; in this 
case. Iz:. z4 } and [z,. z, }. The side condit ion is "'o.~ w0.: == O, where "'0j represents the homogeneous coordinate for the 
/ th group. 

' t i M ] "  2¢, ) - - G  
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Table 2. Run statistics for problem sets solved with 
IPP i-64 and IPP2 (see Section 4) 

Prob. IPPI-64 IPP2 

NFE CPU (s) NFE CPU (s) 

I 16359 20.3 4995 8.0 
2 18766 22.8 8262 13.0 
3 20142 24.4 13078 20.5 

4 24666 30.4 840'2 13.3 
5 24665 30.5 8368 13.4 

6 180410 22.2 8087 13.0 
7 15067 19.0 503'2 8.1 
8 14996 18.8 5033 8.1 
9 14719 18.2 4977 8.0 
1O 14250 17.7 5251 8.5 
11 13086 17.2 5512 8.9 
12 14934 18.0 8149 9.8 

13 13766 16.7 3418 5.6 
14 13847 17.3 4061 6.5 
15 13268 16.4 4057 6.0 
16 15930 19.0 4756 7.6 
17 18787 2,3. I 5444 8.6 
18 20369 24.6 5639 8.9 
19 22395 27.1 7857 12.3 
20 21307 25.5 5949 9.3 

21 14294 17.5 5250 8.4 
22 13842 17.0 4946 8.0 
23 14250 17.6 5077 8.2 
24 14142 17.1 5026 8.2 
25 13280 10.1 5172 8.4 
26 13321 16.2 4504 7.3 
27 14099 17.1 4698 7.7 
28 14818 18.0 4912 8.0 
29 145(10 17.6 4189 6.9 
30 14486 17.8 4130 6.8 

31 15600 18.9 4145 6.8 
32 15461 18.7 4612 7.5 
33 15210 18.4 4424 7.2 
34 15565 18.8 3883 6.5 
35 14911 18.0 3050 6.0 
36 15377 18.6 3589 5.9 
37 15450 18.8 3624 5.9 
38 16308 19.8 3651 G,O 
39 16607 20.2 3739 6. I 
40 16139 19.6 4077 6,0 
41 16384 19.9 4172 6.8 

computational work: it subsumes the amount of  algebra needed to evaluate the system (and its 
partial derivatives) and to solve the linear systems (via Gaussian elimination). It is generally 
proportional to the CPU timings for comparisons of  the same method on different problems. 

However, in comparing IPPI-64 and IPP2, the NFE values are not comparable without making 
adjustments based on the following facts: The IPPI-64 system consists of  eight equations, while 
the IPP2 systems consists of  I I (thus, the one does 8 x 8 linear algebra, the other I! x i i). On 
the other hand, IPPI-64 requires more algebra for each function and Jacobian matrix evaluation 
than IPP2 (thus, the "sparcity" of  the IPP2 system referenced in Section 2). in fact, on the problems 
we tested, IPPI-64 averaged about 815 function evaluations per second, and IPP2 about 630. Thus, 
IPP2 takes about 1.3 times longer per function evaluation than IPPI-64. In addition, the different 
structures of  the models yield computational differences, the principle being: 

(I) The IPP2 model becomes more and more ill-conditioned as twist angles are 
chosen closer and closer to zero. This is not the case for IPPI-64, which, in fact, 
allows zero twist angles, 

and 
(2) lPP2 tracks only 16 paths, while IPPI-64 tracks 64. 

Typically, the ratio of  4 to i paths gives IPP2 a considerable edge over IPPl-64. It is generally 
2 to 3 times faster. On the other hand, on problems with nearly zero twist angles, the two codes 
can run at almost the same speed. In practice, one would run the alternative version of  IPP2 noted 
in Appendix B when twist angles are zero, but these tests measure the sensitivity of the code to 
this factor. The reliability and accuracy of  both programs is excellent. Each program found all 
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geometrically isolated solutions to all problems. However, this reliability is strongly a function of 
the choice of path tracker, and we have chosen one which is less sensitive to ill-conditioned 
problems. (Note Ref. [18] on this important issue.) 

Now we will describe the five problem sets in detail. All twist angle values given below are in 
degrees. The solutions to the first four problem sets are listed in Table 3. 

Part I consists of Problems 1-3. The first problem (given in Table 4) is a moderately scaled 
random manipulator with a moderate random hand position and orientation. It provides a nominal 
start problem for this series of three. The second problem is identical to the first, except that the 
second and fourth twist angles are changed to ! ° and 359 °, respectively. The third problem is 
identical to the first, except that these angles are changed to 0. I ° and 359.9 °, respectively. This series 
is designed to quantify the nominal performance of IPP2 and then the degradation in performance 
caused by nearly zero twist angles. The IPPI-64 performance provides a control, since this code 
is not sensitive to nearly zero twist angles. All runs produced the correct two real solutions, but 
the computational work increases dramatically for IPP2 from Problem !-3. The ratio of NFE's 
is 2.6 from Problem I-3 for IPP2, while, for IPPI-64, this ratio is only 1.2. In comparing the CPU 
values for IPPI-64 and IPP2, we see that IPP2 is 2.5 times faster for the first problem, but only 
1.14 times faster for the third. 

Part 2 consists of Problems 4 and 5. These problems show the increased challenge of solving the 
IPP when the manipulator is near the boundary of its reachable area. Table 5 gives the Problem 
4 data. This problem has two real solutions. Problem 5 is the same as Problem 4, except that the 
first three link lengths have been rounded to four digits from six digits. (Precisely, the rounded link 
lengths are at = 0.123D 4- 3, a 2 = 0.1426D 4- 3 and a3 ffi 0.1625D 4- 3.) The run statistics are 
virtually identical, but this problem has four real solutions. We observe that Problem 4 has a 
complex pair of solutions with small imaginary parts (on the order of 10-2). This complex pair 
resolves into a pair of (ill-conditioned) real solutions under the perturbation of the polynomial 
system that results from rounding the first three link lengths to four digits. This pair of problems 
points out several subtleties: 

I. The "nearly real'" pair of solutions to Problem 4 indicates that the manipulator 
could almost (but not quite) attain the specified hand position and orientation 
with an additional pair of configurations. A user might want to be informed of 
this fact, which would be signaled by a display of the magnitudes of the imaginary 
parts of the complex solutions. Thus, knowing the complex solutions yields 
physical information. 

2. Ill-conditioned endpoints can occur for physically meaningful solutions, and the 
path tracker must be able to deal with them. 

Part 3 consists of Problem 6-12. These are variations of the example of Manseur and Dory [12] 
that gives 16 real solutions to the IPP. In fact, Problems 6-9 have this property, and then Problems 
10-12 have 8, 4 and 0 real solutions, respectively. Problem 6 is defined in Table 6. It is identical 
with the Manseur and Dory example, except that their three zero twist angles have been replaced 
by 1 angles. In Problem 7, these I ° angles are replaced by 10 ° angles. Keeping the twist angles 
fixed as in Problem 7, the rest of the problems in this set replace each of the manipulator parameters 
that have the value of 0.0 with larger and larger values: namely, 0.01, 0.1, 0.3, 0.5 and 1.0 in 
Problems 8-12, respectively. Of interest is the persistence (and finally, degradation) of the "16 real 
solutions" property under greater and greater perturbations, and the stabilizing of the IPP2 run 
statistics as soon as the twist angles become larger than I °. 

Part 4 consists of Problems 13-20. It explores how increasingly severe singularities due to special 
hand positions and orientations affect the performance of the solvers. Problem 13 is a moderate 
problem, the manipulator from the second example of Ref. [6], with a randomly chosen hand 
position and orientation (Table 7). For Problems 14-16 this same manipulator is solved using a 
hand position and orientation that forces (0,, 0j, 04, 0~) to include at least one solution with values 
(0, 0, 0.0), (180, 180, 0, 0) and (180, 180, 180, 180), respectively (Table 8). Thus at least one singular 
solution occurs. In fact, Problems 14 and 15 include two singular endpoints and Problem 16 has 
three. Compare, in particular, the NFE values for Problem 16 with those of Problems 14 and 15 
(in Table 2). To "'make matters worse'" for Problem 17, we set all the offsets (d,) equal to zero. 



T a b l e  3. Rea l  s o l u t i o n s  to  the  test p r o b l e m s  ( 0  for  / =  1-6. in 

degr~-s}  

Prob. @, 81 8~ 04 08 06 

-98.3580 -162.6711 76.6759 -5.5721 73.4399 39.0772 
-I18.1634 134.1567 156.0316 -12.2721 84.$259 43.4999 

-94.0000 -174.0~0 79 .00@0 11.04100 67,0000 33.000~ 
-I13.8130 75,1231 -153,5567 2.6442 77.2033 28.6143 

-93.4624 -174.4208 78.3077 13.02~5 66.0180 22.4839 
-113.3878 68.5254 - 147.5634 2.6060 7?.0359 25.0332 

143.0000 0.9883 -0.0059 0.1527 167.0000 53.00~0 
144.3383 -0.9370 0.1002 0 . 5 8 6 8  166.5701 53.0388 

142.4743 1.7446 -0.0475 -0.0239 167.1868 53.0011 
144.8641 - 1.6935 0.1420 0.7517 166.4180 53.0695 
142.8577 1.0848 0.13,58 -8.8051 -167.0115 76.7711 
144.4604 -1.2252 0.2690 -8.6323 -166.5008 77.7557 

2.5172 108.0759 112.0431 -10.5230 0.0051 -0.1095 
2.517"2 108.0759 -67.9569 -160A770 179.9949 179.8905 

88.6785 -176.7"247 3.2709 -I16.7581 22.8041 -39.5635 
88.6785 -176.7247 -176.7291 -63.2419 157.1959 140.4367 

168.3219 -103.8922 146.6038 -17.2409 -171.8792 98.1651 
168.3219 -103.8922 -33.3962 -162.7591 -8.1208 -81.8349 
113.8436 5.3064 2.25,57 -124.0758 -I17.0152 136.6227 
113.8436 5.3064 -177.7443 -55.9242 -62.9848 -43.3773 
-12.9429 -I05.0993 65.0246 176.9766 172.5830 100.5782 
-12.9420 -105.0963 -I14.9754 3.0234 7.4170 79.4218 
-96,2845 -6.2736 179.9689 ,38.4860 52.5499 -39.4047 
-96.2845 -6.2736 -0.0311 141.5140 127.4501 140.5953 

-120.7884 172.3344 0.9272 1.18.6680 -33.2848 37.1791 
- 120.7884 172.3344 -179.0728 31.3320 -L.16.7152 1.12.8209 
-178,1262 108.1916 32,2C~2 -174.5067 -15.3254 OAI% 
.178,1262 L08,1916 -L47.7338 .5.6933 L6.1.6746 L79.5805 

23.3264 113.4450 112.17,16 34.9,159 0 4.566 - 1.0267 
23,326,1 113. ,1456 67.8254 • 1,i5.05,11 179 5.13,1 [ 7,",L 9733 
88.9601 1711.2877 17 8(}67 [ 18.4:129 28 1'114 :]5.1583 
88.96111 - 176,2877 - L62.1933 .61.5671 15[ 85~6 1.14.8417 

113,7476 9.7132 13.8371 - 125.3720 123.12(;:1 129.51192 
113.7476 9.7132 166.1629 ,.'¢I .6280 56.5737 504908 
165.3442 -101.2557 1.17.9020 24..I~17 179 2226 97.8{;75 
165.3442 -I01.2557 .32,0080 -155.5493 1 1 . 7 7 7 4  -82.1325 
-21.9930 -I01.7730 59.6376 162.4936 163.5698 100.5588 
-21.9950 -IOI.W30 -120.3624 17.5064 16.4302 79.,1412 
-99.2859 -11.1618 172.0617 37.9273 580958 -37.0103 
-96.2859 -11.1618 -7.9383 142.0727 121.9042 142.9897 

-121.2563 165,28410 175,7050 31.0083 -152.2889 145.36,'R} 
-121,2563 165.2800 -4.2UMA} 148.9917 -27.7111 -34.6350 
-161.3488 115.0559 25.4373 169.1701 -15.41192 -4.4428 
-161.3488 115,0.559 - 154.5627 10.8299 -164.5908 175.5572 

22.4916 112.0565 114.1508 -33.9243 0.2336 (1.3106 
23.8236 114.8123 -69.3955 -144.5878 179.5534 178.7418 
88.8581 -177.3825 - 161.0037 -62.63~ 153.01211 144.9976 
89.7344 -174.8276 16.2300 -I 18,9962 28.2052 -35.3762 

164.9044 -101.7499 -32.3602 -154.6302 0.2461 -81.1792 
165.8229 - 101.8299 149.0939 -24.9005 -179.8072 97.5188 
113.8852 8.5343 .165.0086 -54.3529 -56.7753 -50.4638 
115.2645 10.4586 13.4153 -125.1292 -122.1107 129.0219 
-21.2557 -102.3271 59.2809 163.0431 163.6912 99.5142 
-22.6369 -99. ¢5565 -121.39410 17.6573 16.7902 -78.1195 
-94.1474 -13.0521 174.2336 30.9809 57.3119 -37.5845 
-95.8677 - 10.3199 -8.7075 142.4922 122.0354 142.8451 

-121.8303 166.2178 -5.1467 150.7160 -28.7019 -34.2967 
- 122.0697 163. r8500 177,1279 30.15(10 -151.9854 145.6911 
-160.8461 115.4955 -154.2453 10,4749 -163.7822 174.8222 
-162.0129 115.0121 24.7542 170.7711 -16.3489 -3.3858 

16.8717 98.2950 131.5822 -26.4830 -1.3744 4.2524 
30.4278 127.2051 -85.2921 -138.4571 179.3597 174 7179 
84.8749 171.6077 -148.7853 -75.1136 163.3560 1.17.3729 
98.3927 -161.2939 1.7567 - 123.1325 26.28(;8 .37 8298 

114.3602 -2.0962 -154.7715 -52.0886 -57.6938 -.19.8448 
128.4112 17.9808 9.5063 -123,4288 -I I0311.I 1241456 
159.9762 -106.7078 -34.5365 .I.16.09G9 38597 -72.1~92 
169.6530 -I07.1256 159.9721 -29.4477 -170,9979 92.4108 
-15.1681 -106.8375 54.7481 1675682 164.5775 $9A197 
-33.1818 -73,2506 - 134.9465 19.6907 23.2223 63.2920 
-67.4887 -34.6633 - 163.0851 27.$066 44 16(7 .15 1.I17 
-92.0556 -2.6492 -15.7344 1.i5.95,13 I23 5967 I.I1 1979 

- 125.3293 175.5695 -13.6346 lT,l 342! -37 7510 31 .~135 
-132.1602 1.186549 -168.6365 2(1 $289 -150 08~3 150 .'2847 
- 154.3574 1219345 - 152.8378 8.6291 .156.1923 16116609 
-167.7599 112.5338 19 1076 175 5597 2,1,6721 7 555a 

--(t~nlinu¢c~ o~po.wl¢ 
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Table 3.--conr/nued 
10 14.6997 51.2019 173.1827 -15.6332 - 4 . , 5 6 0 2  -0.4541 

102.1531 -25.5049 -134.1g03 -44.2042 -50.3553 -43.8706 
156.2957 43.8474 1.38,-3 - 123.9633 -82.1190 I04.0899 
176.283,5 -118.~i06 -174.7523 -42.5474 -150.3013 80.2031 
179.5357 91.5570 6.7962 -146.1939 -46.9120 46.5374 

-4.1009 -110.S949 33.8088 175.3863 168.7201 62.8124 
-82.4338 14.8241 -32.5608 151.9686 129.8160 137.8728 

-129.6185 -159.9117 -36.2711 -167.1353 -57.7226 -27.8057 

3.0460 -99.7140 -1.100,5 179.5759 167.8233 38.3,513 
-69.1949 34.1054 -53.1396 156.73,53 140.8344 132.0347 

-146.0495 -134.7539 -65.9888 -131.8841 -74.1285 -15.8973 
-177.3113 -126.9879 -144.1177 -61.9760 -125.1324 59.5309 

12 No real solutions. 

13 1.3571 21.8656 49.5020 -135.5316 177.2369 118.2644 
22.0000 11 .0000  73.0000 -86.0000 -163.0000 67.0000 
22.2259 -83.0189 - 153.8732 -64.4355 79.3048 138.8233 
33.3157 9.1797 89 .1062  -68.5913 - 154.5087 52.2032 
55.8623 -13.4494 -143.1730 -142.0105 . 63.7681 157.7112 

122.3995 125.6131 57 .1077  -64.9907 7.7464 103.8062 

14 13.2851 12.5493 -1.3806 28.9590 8.8568 80.5781 
22.0000 0.0000 0.0000 0.0000 0.0000 67.0000t 
90.3382 -8.8447 111.2940 23 .9813  28.5286 46.5138 

15 10.0457 -4.7161 26.5377 17.7366 -146.0340 -97.1835 
22.0000 180.0000 -180.0000 0,0000 0 . 0 0 O O  67.00001 
36.6812 92.1914 -149.8650 125.9562 6.5082 100.1607 
42.7"/'62 -3.1257 89.7629 32.1047 -129.8878 -77.3090 
82.7315 162.1436 98.703,5 -37.1989 -28.1860 56.7000 

16 22..0(}00 179.9997 179.9999 -180.0000 -179.9999 67.0003:[ 
57,5074 -32.4328 -168.7493 90.0807 138.4922 - 15.6728 
141.6415 143.6943 0.2970 17.2663 126.8306 158.5497 
-53.9826 -|0.6097 -42.2725 -79.6420 78.0916 -9.2603 

17 22.00~) 0.0000 0.0000 0.0000 0.0O00 67.0000§ 

18 22.0000 O.O0(K} 0.0000 0.0000 0 .00~  67.0000§ 

19 22.0000 0.0(g}(} L80.6~000 0,0000 0.0000 67.0000§ 
22.0/NN} t80,00(}0 0.iX)00 O.0/g}0 - 180.0000 - 113.0000§ 

20 No gof,nu~tric-Ily iaohLt~l re*d ~ i , t i o . . .  

?Mult ip l ic i ty  two.  ~Mult ipl ic i ty  three. §Mult ipl ic i ty  four. 

and generated a hand position and orientation yielding a solution with theta values (0, 0, 0, 0). (The 
hand positions and orientations for Problems 17-20 are given in Table 9.) Then in Problem 18 we 
set all the link lengths equal to 0.45 and otherwise the parameters are as in Problem I 7. In Problem 
19 the hand position and orientation for this last manipulator was chosen with one ?hera set equal 
to (0, 180,0,0), and finally for Problem 20 the same manipulator with theta set equal to 
(180, 180, 180, 180). For Problems 17 and 18 the number of  continuation paths with singular 
endpoints is 8, for Problems 19 and 20 it is 12. Problem 20 is particularly degenerate. It possesses 
no real geometrically isolated solutions at all! tit has exactly two complex pairs of geometrically 

Table 4. Problem I 

Mmfiptdator parmnetrrs a, d, m;d Q (i.e., th© flrnt row gives a s for j = t to 6, the sec, . . i  
row dj for j := t to 6, am[ the [emt row o: for j = 1 to 6): 

0.7530D + 0  0.2190D ÷ 0 
0.7550D + 0 0.9320D + 0 
0.2200D + 2 0.1000D + 2 

Hn~d p~ition: 

-0.23342003175,5010D ÷ 1 

H~ml orientation matrix: 

-0.4~4444346169680D + 0 
0.260250280436430D ÷ 0 
0.851909694608040D 4- 0 

0.4320D + 0  0.3430D+0 0.4310D+0 0 .6420D+0 
0. "6530D + 0  0.3380D + 0  0,1280D + 0  0.5260D + 0  
0.7000D + 2  0.3490D + 3  0.8800D + 2  0.2600D + 2  

0.216941600253900D + 0 0.277358043344060D + 1 

-0.4584104439919C-0D - 1 
0.948269069850210D + 0 

-0.314140684747780D + 0 

-0.889594815004450D + 0 
-0.181811888220130D + 0 
-0.419005372780620D + 0 
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Table  5. Problem 4 

M s n i p ~  pacmneters a, d, and a (i.e., the t i n t  row g ivm a~ for ] = I to 6, the secoml 
rowd3for j = I  to 6, and the last row a~ fo r1  = 1 to6) :  

0.123366D+3 0.142564D+3 0.162544D+3 0.343000D+0 0.789300D+0 0.123000D4-0 
0.968,500D+0 0.563000D+0 0,190000D+0 0.163000D+0 0.10O000D+0 0.876000D+0 
0.100000D+I 0.350000D+2 0.200000D+2 0.660000D+2 0.160000D+3 0.370000D+2 

Hand position: 

-0,34499607188930D + 3 

Hand orientation matrix: 

0.74470324934565D + 0 
0.31353420472692D + 0 
0.,58916328201975D 4- 0 

0.25338291709575D + 3 0.27112740408867D + 1 

-0.66674687490185D + 0 
0.38842979699426D + 0 
0.63605887904785D + 0 

-0.294223,59229639D- 1 
-0.86649789109568D + 0 

0.49831288314081D + 0 

Table 6. P r o b l e m  6 

Msnipulat~r parmneters Q, d, and a (i.e., the first row gives % for j = I to 6, the ~cond  
row d s for j = ! to 6, and t he l s s t  row c~ for j = I to 6): 

0 .30D4.00 0 .10D+01  0 . 0 0 D + 0 0  0 . 1 5 D + 0 1  0 . 0 0 D + 0 0  0 . 0 0 D + 0 0  
0 . 0 0 D + 0 0  0 . 0 0 D + 0 0  0 . 2 0 0 + 0 0  0 . 0 0 D + 0 0  0 . 0 0 D + 0 0  0 . 0 0 D + 0 0  
0 . 9 0 D + 0 2  0 . 1 0 D + 0 I  0 .90D+02  0.IOD4-01 0 . 9 0 D + 0 2  0 . 1 0 D + 0 1  

Hand position: 

-0,1140175D + 01 0.0000D 4- 00 0.0000D 4. 00 

Hm,d orie. tat lon matrix: 

- 0 . 7 6 0 1 1 7 D + 0 0  -0.641689D+00 0.102262D4.00 
0.133333D + 00 0,000O00D 4- 00 0.991071D 4- 00 

-0.635959D 4- 00 0.766965D 4. 00 0.855580D - 0l 

Table 7. P r o b l e m  13 

Manipulato¢ Imrametcrs a,  d, and ,~ (i.e,, the first row gives % for i = | to 6, the seco.d 
row d~ for j = I to (3, and the IMt row % for j = I to 6): 

0.45D 4.0 0.5~D 4.0 
0.50D+o 0.60D+0 
0.80D + 2 0,93D + 2 

Hand p~a, ithm: 

0.16829945912573D t- 1 

Hand orientation m~,trix: 

-0.583147217TF/09D 4- 0 
0.39371509906310D 4- 0 

-0.7105826786297tD + 0 

0 . 7 5 D + 0  0 . 7 5 D + 0  0 . 5 5 D + 0  0 . 4 S D + 0  
0 . 4 0 D + 0  0 . 1 0 D + I  0 . 4 0 D + 0  0 . 6 0 D + 0  
0.12D+3 0.12D+3 0.93D+2 0.80D+2 

0.484,1~I3071319D + 0 0.820~875430520D + 0 

0.1878.5983973287D + 0 
0.9163.5422~19387D + 0 
0.35355850701fi53D + 0 

0.70034676124748D + 0 
0.726867t 1.563778D - 1 

-0.60833267128083D + 0 

isolated solutions. The rest of  the solutions arc included in positive-dimensional solution sets. 
However, some of  these include real (and thus physical) solutions.] The path tracker abandoned 
some paths near their endpoints, due to the high degree of  singularity, which is why Problem 20 
is solved in less time than Problem 19. The program reports "no solutions" for this last problem, 
which we believe is sensible for such a degenerate case. 

Part 5 is taken from Ref. [10], where the problems and their solutions are given in Table I (10 
problems) and Table 2 (I I problems) of  that reference. (The Table I problems are taken from Ref. 
[4].) We have numbered these as Problems 21-30 and 31-41, respectively. In Table 2, we include 
our run statistics. No run statistics are given in Rcfs [4, 10].? 

YFor methods involving reduction computations, the total CPU cost would include the cost o f  generating the polynomial 
to be solved, the cost o f  solving the polynomial, and the cost o f  back substituting to generate the physical solutions. 
The  need for very high precision to assure the numerical stability o f  the elimination process can significantly increase 
the C P U  cos t .  
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Table 8. Hand positions and orientations for Problems M-16 
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Problem 14 band paitiorc 

0.32597195693809D + 1 0.54315555639162D + 0 0.57283794190814D + 0 

Problem I4 hand orientation matrix: 

0.64615426816396D + 0 0.79161767339574D - 01 0.757363289315751) + 0 
-0.56119424077973D + 0 -0.6-D + 0 0.54533681661.351D + 0 

0.51473~78166OQQD + 0 -0.77850153117194D + 0 -0359135521WSO5D + 0 

Problem 15 band position: 

0.21439821463962D + 1 0.36826879597612D + 0 0.62213244813299D + 0 

Problem 15 hand orientation matrix: 

0.98126643087233D - 1 -0.4048C956842247D + 0 099912965152965D + 0 
0.80017195261471D + 0 0.5752406O710887D + 0 0.16977364396597D + 0 

-0.59168911445555D + 0 0.71079352913082D + 0 038O36370854822D + 0 

Pmblem 16 hand position: 

0.12666352974634D + 1 -0.1514399141513QD + 1 0.16934363026792D + I 

Problem 16 hand orirn~ation m&ix: 

030249998111430D +0 0.2106Q2446057O5D + 0 0.92960332389445D + 0 
9294575’2407369D ” + 0 -0.94818038MisXU)D + 0 0.119077250862fBD + 0 
0.9965203163G533D + 0 0.23762QO2QQ4669D + 0 -0.346795453713958 + 0 

Tahlc 9. thnd positions and orientations for Problems 17 -20 

Pmbkm 17 hand p0silirnl: 

9.31195UOlY61 I ISD + I O.Y9Wl2701567G5D t 0 0.231G3290174744D t 0 

Proldm~ 17 hiuul wi*~nlulim matrix: 

U G4111542YYlYXlGD t 0 0.79161767339574D - 1 0.75738326931575D t 9 
-9.561 lW24077973D + 0 -9.62263953294554D + 0 0.54533681661861D t 9 

9.514739iSl6GQJ9D t 0 -0.778G9153117194D t 0 -0.35913652l!X795D t 0 

0.23778331024561D t 1 0.59932742683492D t 0 023163290174744D + 0 

Pmblem 18 band ~nier~lation matrix: 

0.G4815428818396D + 0 0.79161767330574D - 1 0.7573.3326031575D t 0 
-0.56119424077973D + 0 -0.G2263053294554D + o 0.54533681661851D t 0 

0.51473976166099D t 0 -0.7785O1531171Q4D + 0 -0359135521Q6705D t 0 

Prdhu I9 Iriu~J position: 

-0.7?ti9iLi5531045D + 0 0.126463145542931) t 0 0.1416740408594OD t 0 

I’nMrm 19 hnnd orimtation matrix: 

-0.68631115723422D + 0 -0.18558QUO969193D - 2 -0.7273056792102OD t 0 
0.65563580573354D t 0 0.43129177251048D t 0 -0.61978149149914D t 0 
9.3146312OlQOQ78D +0 -0.90221059771914D + 0 -0.29478356749881D + 0 

Pml~lcw 20 hnnd pi&ion: 

0.5333131~C1~56~19D t 0 0.30113181787028D + 0 0.40iQ341423G44OD t 0 

rrc,btrrll 20 hwd orirntntim mntrix: 

II 3024099Y1 I I43rID t 0 O.?lOG9?44G95795D t 0 0.929GO332389445D t 0 
0 ?!l4575?240i3WD t 0 -0.94SlRl~36GGtl236D t 9 0.113077TO6G’98D _ . t 0 
fl WlG.VOR 1 GXXl3D t 0 O.?3782902994669D + 0 -lJ.348i9545371395D + 0 
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5. S U M M A R Y  A N D  C O N C L U S I O N S  

In this p a p e r  we p resen t  a new m o d e l  for  the  6R  inverse  pos i t i on  p r o b l e m  (in Sec t ion  2) a n d  
def ine  a so lu t ion  a p p r o a c h  based  o n  p o l y n o m i a l  c o n t i n u a t i o n  (in Sec t ion  4). The  new mode l  

a s sumes  that  twist  angles  are  n o t  zero,  b u t  a m o d i f i c a t i o n  is g iven  in  A p p e n d i x  B which  covers  
the zero twist angle cases. We report on testing the resulting 16 path continuation method on 41 
test problems and include for comparison the outcome of testing a 64 path continuation method 
from Ref. [8] on the same problem set (Section 4). In Section 3 we outline the theoretical basis 
for our numerical technique: the method of the generic case and coefficient-parameter polynomial 
continuation. 

We conclude: 

I. The new approach is reliable on problems with twist angles of at least I/10. CPU 
times vary in our tests from 5.9 to 20.5 s. The average time is less than 10 s. This 
compares with ¢pu times varying from 16. I to 30.5 with an average less than 20 s 
for the method from Ref. [8]. 

2. The methodology of the approach is applicable to any polynomial system and is 
potentially a very powerful tool for the analysis and solution of systems of 
polynomials that arise in kinematics. 

Acknowledgement--This work represents a cooperative interdisciplinary effort. The order of the names given on this paper 
has no significance. There is no primary author. 
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A P P E N D I X  A 

The IPPI Mmlel 
In this Appendix we outline the IPP 1-64 method for solving the 6R inverse position problem. This method was introduced 

in Refs [7, 8] as an example of the m-homogeneous approach to polynomial continuation. IPPl-64 is an improvement of 
the method proposed in Ref. [6]. 
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In Ref. [6], the 6R problem is reduced to solving a system of eight second-degree equations in eight unknowns of the 
following form (see also Ref. [17. Chap. 10]): 

Fl = al.l w, ws + at:wl w, + alawzw3 + cf.,w=w4 

+ zt. ~ w~ w~ + al. 6 w s w s + at.7 w6 w~ + at.8 w6 w8 

+ a~.9 wm + al.,o Wz + at.t, w~ + at.,= w, (A. 1) 

+ a~.t3 Ws + az.j,w6 + al.ts w7 + az.,~wl 

+ al,,7 (I : I . . . . .  4). 

f , =  w ~ _ , +  w ~ _ , -  I ( 1 = 5  . . . . .  8), 

where the coefficients a O are given by the manipulator parameters. The total degree of this sytem is 256, and therefore a 
traditional (one-homogeneous) polynomial continuation method must track 256 paths to solve the system. This was 
implemented in Ref. [6]. However, by grouping the variables into the two groups: 

{w,. w:. w,. w,} {w,,w,.w,.w,}. 
the resulting two-homogeneous structure yields a Bezout number o f  96. We further observe that there are eight 
mult ipl ici ty-four fixed solutions to this two-homogeneous system (that do not depend on the choice of  parameters). This 
is proven as Theorem 4 in Ref. [8]. Thus. as discussed in Ref. [8], we may set up a continuation with only 64 paths. In 
fact, we use a continuation system of the form 

H(w. t)  : (I - t)TG(w) + iF(w). 

in which the start system G is the second example in [6] and y is a randomly chosen complex number. 
The 64 paths are tracked using the method from Rcf. [17. Chap. 4] (the CONSOLg path tracker). The 64 endpoints are 

64 solutions to (A. I), which for generic choices of  parameters partit ion into four groups of  16 each. as follows: 

(I) 16 finite solutions to the 6R problem. 
(2) 16 finite extraneous solutions. 
(3) 16 solutions at infinity to the 6R problem 

and 
(4) 16 extraneous ,solutions at infinity. 

This is established by solving equation (A. I ) for a random choice of parameters and evoking the method of the generic 
ca.~. This generic system is solved using a modification of the code used to accomplish the analogous purpose for IPP2. 
(See Section 4.) 

Thus. for this model, our use of side conditions in evoking the method of the generic case is a little more complicated 
than in Section 4. First, we have side conditions that pick out possibly physical solutions; specifically, these side conditions 
are the equations of the original unreduced IPP system. Solutions to equation (A.I) that do not satisfy these equations 
are called "'extraneous". Then, we have side conditions that rule out solutions being possibly physical; specifically, the 
equations that fix a solution at infinity. The [PP2 analysis required only this second type of side condition, (See Refs [14. 211 
for more on the way side conditions can be used.) The result is that the 64 path endpoints can be partitioned generically 
into four sets of 16, as above. 

lPPl-64 solves the problems from Section 4 in CPU times ranging from 16.1 to 30.5 s. The CPU times reported in Ref. 
[6] (for three other problems) range from 212.363 to 266.513 s. We would generally expect IPPl-64 to outperform the Ref. 
[fJ method, since it tracks a quarter of the paths and there is no reason to think it would be less reliable. 

APPENDIX B 

Parallel Joints 

I f  one or more of  the joint  twists is 0 or 180-. then the corresponding e, =- a,/sin z, is undefined and the reduction to 
equations (14---16) is illegal. Moreover. for very small sin a,. the system will be ill-conditioned. (For quantitative information 
on this. s¢¢ the experimental results in Section 4.) To avoid the difficulty, we retain x, + ~ as a variable and eliminate z , .  i 
instead using the relation 

ZA * E : - - s i n  % z  k x x ,  ~.! + cos ~z,x,. 

To avoid increasing the degree, we introduce a new variable 

VkmZ,  X X k + l .  

so that 

z~. ~ = -s in  ~,v, +cos ~, : i .  (B.I) 

Now. we write the system as 

where equation (B.I) is used everywhere z~., appears. 

Xl ~i ~ ¥ i X . "  k . 

z , . z , = !  i ~ k + l ,  % . h e ,  l, 

z , ' z , ÷ l = c  , i ~ k .  vA.z,=O. 

(d,z, + e,z, x z , , i )  + d , z ,  + a , h  x z, = I~, 
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S O L U T I O N  D U  P R O B L E M E  D E  L A  P O S I T I O N  I N V E R S E  P O U R  
M A N I P U L A T E U R S  A S I X  J O I N T S  R O T A T O I R E S  U T I L I S A N T  L A  

" M E T H O D E  D U  C A S  G ~ N ~ R I Q U E "  

R~.um~--Dans cet article on considZ're le calcul de routes les solutions du probleme de la position inverse 
pour manipulateurs g~n~raux ~ six joints rotatoires. Au lieu de r~-duire le probl~me ~ une &luation tr~s 
complexe d'entr~'--sortie, on travaille avec un syst~'me de I 1 6quations polyn6miales simples. En d~'pit du 
fait que le degr~ total du syst~me soit tr~s ~ I ~  (1024), en ufilisant la "m~thode du cas g~-rique'" on 
montre num~riquement que le nombr¢ g~n~rique des solutions est 16, en accord avec les prenves 
pr~alables. En outre, on pr~sente une m~thod¢ num~riqu¢, bas~ sur la continuation des param~tres des 
polyn6mes, qui permet de trouves ¢llicacement routes les 16 solutions. On pr~sente un ensemble de 41 
problemes dans lesquels l'algorithm¢ num~rique n,~.~'ssite en moyenne moins de I0 sec CPU dans un IBM 
370-3090 en FORTRAN double precision. Cette m~thodologie est ~galement applicable i d'autres 
probl~mes de cin~matique qui sont aussi formul~s en syst~mes d':,'quations polyn6miales. 


