Mech. Mach. Theory Vol. 26, No. 1. pp. 91-106, 1991 0094-114X/91 $3.00 + 0.00
Printed in Great Britain. All rights reserved Copyright © 1991 Pergamon Press pic

SOLVING THE 6R INVERSE POSITION PROBLEM USING
A GENERIC-CASE SOLUTION METHODOLOGY

CHARLES WAMPLER and ALEXANDER MORGAN
Mathematics Department, General Motors Research Laboratories, Warren, M1 48090, U.S.A.

(Received 19 November 1989)

Abstract—This paper considers the computation of all solutions to the inverse position problem for
general six-revolute-joint manipulators. Instead of reducing the problem to one highly complicated
input-output equation, we work with a system of 11 very simple polynomial equations. Although the total
degree of the system is large (1024), using the “method of the generic case™ we show numerically that
the generic number of solutions is 16, in agreement with previous works. Moreover, we present an efficient
numerical method for finding all 16 solutions, based on coefficient-parameter polynomial continuation. We
present a set of 41 test problems, on which the algorithm used an average of less than (0s of CPU time
on an IBM 370-3090 in double precision FORTRAN. The methodology applies equally well to other
problems in kinematics that can be formulated as polynomial systems.

1. INTRODUCTION

The inverse position problem for six-link manipulators, in which the hand position and orientation
are given and the joint displacements are to be found, is of fundamental importance to computer
controlled robots. [t is also equivalent to the displacement analysis of seven-link single-loop spatial
mechanisms. While the problem can be expressed in closed-form for a variety of special cases, such
as when three consecutive axes intersect in a common point, this appears to be impossible for more
general cases. Of particular note is the most general 6R manipulator, which has six revolute joints
(hence “6R"") and general link parameters. In the absence of a closed-form solution, a problem
can be considered “solved™ when two objectives have been met: (1) a tight upper bound on the
number of solutions has been established and (2) an efficient, numerically sound method for
computing all solutions has been demonstrated. In this paper, we present a numerical approach,
based on polynomial continuation, that addresses both objectives for the 6R problem. Moreover,
the scope of the methodology extends beyond this problem to a host of other kinematic synthesis
and analysis problems. This methodology is based on the “method of the generic case™, a rigorous
computational technique for proving results about polynomial systems. This includes a general
method for finding (and proving) tight upper bounds on the number of solutions.

The inverse position problem for manipulators has been studied for at least two decades, while
the analysis of spatial mechanisms extends back a century. A landmark treatise on the subject of
6 R manipulators came in 1968 when Pieper [1] developed closed-form solutions for the case where
any three consecutive axes intersect in a common point. His work also included a polynomial
formulation for the general 6R problem, but it had a total degree of 64,000. The first major
accomplishment in the attack on the general 6R problem came in 1973 when Roth et al. [2] showed
that there are at most 32 solutions.t Albala and Angeles addressed the problem in 1979 [3]. Then
in 1980, Duffy and Crane [4] derived a 32nd degree polynomial for the problem. Dufly [5] also
presented lower degree polynomials for a wide variety of special cases involving prismatic or
cylindric joints as well as for the 6R case with the consecutive axes parallel. In 1984, Tsai and
Morgan [6] cast the problem as eight second-degree equations (total degree 256). which they solved
numerically using polynomial continuation. Reformulated as a two-homogeneous system, the
Tsai-Morgan system was reduced to two-homogeneous degree 96 by Morgan and Sommese {7] and

tUnless there are an infinite number. This is a qualification we will generally omit, since it is always a possibility: for
example, in singular configurations in which one or more axes may turn without affecting the hand position and
orientation.

91



92 CHARLES WAMPLER and ALEXANDER MORGAN

effectively to degree 64 in Ref. (8]. (See Appendix A.) Computations with both formulations
supported the conjecture that, for generic parameters, there are always 16 (sometimes complex)
finite solutions. Motivated by this result and numerical solutions by Crane, Primrose [9] was the
first (1986) to prove conclusively that there are at most 16 solutions by showing that the remaining
16 solutions to the Duffy-Crane polynomial had pure imaginary parts. Finally, in 1988 Lee and
Liang [10] were able to reduce the problem to a single 16th degree polynomial. This work was
simplified and extended in Ref. [11]. Complementing these results, Manseur and Doty [12] have
found an example where all 16 solutions are real.

Although a 16th degree polynomial reduction of the 6R problem has been established, it
does not necessarily follow that the fastest, most numerically stable numerical method for this
problem must be based on such a reduction. Issues of algebraic stability, for example, have lead
some researchers [11] to evoke hundreds of digits of precision for portions of the computation.
Further (numerical) analysis will be required to clarify which combinations of methods are most
effective.

Almost two decades have elapsed from the time that Pieper first considered the general 6R
manipulator problem as a polynomial system until a tight bound on the number of solutions was
firmly established. This indicates the difficulty in reducing even a moderately complicated
polynomial system to a single polynomial of minimum degree. In this paper we use a methodology
for general polynomial systems that can be used both to determine the generic number of solutions
numerically and also to calculate all of the geometrically isolatedt solutions. This methodology
does not involve reducing the system to a single polynomial. It is instead based on new
developments in polynomial continuation. We apply this general methodology to a new model
for the 6R inverse position problem, presented in Section 2. In Section 3, we give an overview
of polynomial continuation and the related polynomial theory, focusing on the recent develop-
ments that have improved the method dramatically. Section 4 describes our code for solving
the problem and documents its performance on a number of examples. Section 5 gives the
conclusions.

2. MODELLING

We model the 6R manipulator problem using the Denavit~Hartenburg formalism [13) (see Fig.
1). That is, each link is represented by the line along its joint axis and the common normal to the
next joint axis. (In the case of parallel joints, any of the common normals can be chosen.) We place
a unit vector z, along joint axis i and a unit vector x; ., along its common normal to joint axis i + 1.
(Boldface type denotes a vector in three-space.) A fixed vector x, perpendicular to z, defines a fixed
reference frame, and an end-effector axis z, is attached to link 6. The origin point O and the
endpoint P are defined as in Fig. 1. Following the usual convention, each link has an offset 4, along
z, and a length g, along x,,,. Also there is a twist angle «; between z, and z, . ,. The joint rotation
0, is the angle between x, and x,,,. The parameters d, q,, o, for i = 1,..., 6 are constants for a
given 6R manipulator, whereas 0,, . . ., 8, are the variable joint angles. Now, given an end-effector
position p = OP and end-effector orientation X,, z,, the problem is to find all the corresponding
sets of joint angles (8,,....6,). (In the equivalent 7R spatial mechanism problem, z, is the final
joint axis and we wish to find the joint angles as z, is rotated about 2,.)

We may formulate the problem as follows. (The symbols **- ™ and ** x ™ represent the vector
scalar product and the vector cross product operations, respectively.) The unit lengths imply for
i=1,....7

z,-z,=1, (N

X x =1 2)

+A solution is geometrically isolated if it is not part of a positive-dimensional solution set (e.g. a curve or surface of
solutions). We can be assured of finding only the geometrically isolated solutions using polynomial continuation (or
any other general method). If a polynomial system does not have an infinite number of solutions, then every solution
is gecometrically isolated. A solution is said to be nonsingular if the Jacobian matrix of the system at the solution is
nonsingular. Nonsingular solutions are geometrically isolated, but the converse is not true.
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Fig. 1. Devanit-Hartenburg notation for a 6R manipulator.

The definition of x,,, as the common normal to z, and z,,, gives fori=1,...,6
X, '2,=0, 3)
Xip1°Zigy =0 4)
The definitions of the twist angles imply for i =1,....,6,
zZ,°2,, =Cosq, &)

Sinaix:+l=l:le+l' (6)
Similarly, the joint angle definitions imply fori=1,...,6

X" X;,, =cosb, )

sinf,z,=x,xX,,,. (8)

Finally, the endpoint position can be computed as

6
p= Z dz,+ax,,,) 9

1w

Given x,,z,,X;,2;,p, this may be viewed as a system of equations for the unknowns x,,z;
i=2,....6and 6,i =1,...,6. We have more equations than unknowns, but they can be shown
to be consistent. Our first action is to reduce the number of variables and equations.
Equations (1)(9) are basically just the definitions of the usual Denavit-Hartenburg parameters.
From these relations, one can easily write x,,z; in terms of x,_,,2,_,, 8, and thereby rederive the
conventional transformation matrix formulation of the problem. We take an alternative approach,
which is to first calculate x,, z, in equations (1}+6) and (9) and then evaluate 6, from equations
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(7) and (8). That is, given all the joint axis directions and their common normals, we compute the
joint angles as

6, = tan-" (z_x_x_) (10)
xl ’ x1+ t
If the joint twists for links 1-5 are general, that is, if sina, #0, i = 1,..., 5. then we can solve
for x,,, from equation (6):
X1 =@ x2z,,)sina,. )

From this and equations (1) and (5), equations (2){(4) follow easily. Also, we can calculate z, as
Z, = Sin &%, Z; X X, + COS dyZ;. (12)

Defining the known quantity p as

P=pP—diz—a,x;,—dz, (13)
a complete polynomial system of 12 equations in 12 unknowns z, i =2,3,4,5 is as follows:
zirg;=1, i=213,4,5, (14)
Z,°2,,.,=¢, i=1,23.4,5, (15)
5
ez X2+ Y (A1 +ez,x2,,) =, (16)
im2
where ¢;=cos®, and ¢, = a,/sina,(i = 1,...,5). Remember that z, is given and z, is computed in

equation (12). (Note that x, and z, are also given.) This is the system of equations which we used
for our computations. After solving for the joint axes z,, we find the common normals from
equation (11) and then the joint angles from equation (10).

System (14)~(16) consists of two linear [equation (15) i = | and i = 5} and 10 quadratic equations,
for a total degree of 2'° = 1024. Because we take z, = (0, 0, 1), equation (15) simply sets the third
component of z, to be ¢,, so this variable can be easily eliminated. Thus, the system we actually
submit to the numerical solver consists of 11 equations in 11 unknowns. Note that the sparsity
of the system is a plus in minimizing the cost of function and Jacobian matrix evaluations. This
sparcity could also be exploited to decrease the cost of solving linear systems involving the Jacobian
matrix. Since we are mainly interested in general geometries, the restriction to nonzero twist angles
is not viewed as a difficulty. For completeness, Appendix B shows how to write a similar system
for a manipulator with parallel joints.

3. POLYNOMIAL THEORY AND POLYNOMIAL CONTINUATION

From now on we refer to the 6R inverse position problem as the “IPP”. In Section 3.1 we outline
“the method of the generic case™, which is the basis from polynomial theory for our numerical
technique. Then in Section 3.2 we present the numerical technique itself: “coefficient-parameter
polynomial continuation™.

3.1. The method of the generic case

“The method of the generic case™ refers to a mathematical theory analyzing the structure of the
solution sets of polynomial systems. Here we outline the basic ideas. The results are precisely stated
and rigorously proven in Ref. [14]. We denote by C' the complex Euclidean space of dimension
i, and by R’ the real Euclidean space of dimension i.

We begin with the assumption that we have a system of polynomial equations F that varies with
a set of parameters Q: thus, we have

F(clg}.w)=0, (17

where w is a set of complex variables, w € C”, ¢ is a set of parameters, say ¢ € @, and c is a set
of analytic functions giving the coefficients of the polynomials in terms of the parameters. Thus
clq] denotes an analytic map from the parameter space Q to the coefficient space, which we may
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take to be some C'. We need to have w € C* rather than w € R" for theoretical reasons, even if
only real solutions have physical meaning. Similarly, we will assume Q is an open subset of
some C’, although the theory allows much more general spaces. (See Section 4, discussion of
“Part 2" of the problem set, for a case in which complex solutions have physical meaning for the
IPP.)

We wish to talk about “possibly physical solutions™. We make this precise as follows: we assume
we have a particular collection of polynomial “side conditions”, s(c[q], w) = 0; that is, additional
polynomial equations that also vary with ¢ and have w as the independent variable. We further
assume that any solution obeying the side conditions cannot be a physical solution. The possibly
physical solutions are those solutions to F(c[g], w) =0 that do not obey the side conditions
s(c[g), w) = 0. In any particular case, these possibly physical solutions may not be physical; for
example, some of them may include imaginary numbers. We want the generic set of possibly
physical solutions to be as small as possible. This will yield the tightest bound on the number of
physical solutions. The best case occurs when there is a choice of parameters for which all the
possibly physical solutions are physical, demonstrating that the bound cannot be any tighter. For
the IPP we have such a tight bound, 16.

In physical problems, it is natural to conceptualize g as being the set of physical parameters.
However, often it is desirable to let ¢ be derived from these parameters rather than take g be the
physical parameters themselves.

Regardless of the way in which ¢ is defined, we have the following result: for all generic
choices of ¢, in Q, the structure of the solution set of F(c[q,], w) =0 is the same. In practice,
we identify a random choice of g, from Q with a generic choice. Although this is not strictly
correct mathematically, it is plausible and defensible. The structure of the solutions of
F(c[q). w) = 0 includes such qualities as the number of geometrically isolated finite solutions, the
number of geometrically isolated solutions at infinity, the type and dimensionality of positive-
dimensional solution components, the number of geometrically isolated strictly imaginary solutions
and strictly real solutions. Also, if s(c[q]. w) = 0 is a polynomial system that also varies with g and
if a certain number of solutions of F(c[g,], w) = 0 also satisfy s(g,, w) = 0, then that same number
of solutions to F(c[gq). w) =0 will also satisfy s(c[q]. w) =0 for any generic choice of q.

Suppose that we numerically solve F(c[q,]).w) =0 for a randomly chosen ¢,. Then, with the
qualifications that

(1) g, is random instead of generic,
and
(2) the computational solution of F(c{g,], w) =0 is subject to error,

the revealed structure of the solution sets of generic F(c[g], w) =0 is rigorously proven. In
particular, the number of nonsingular possibly physical solutions is determined.

Since generic g are dense in Q, we obtain results for nongeneric systems from arguments about
limits. (The arguments include some subtleties. See Ref. [14].) Thus, for example:

¢ the number of geometrically isolated (nonsingular, respectively) finite solutions of
a nongeneric F(c{q], w) =0 is bounded above by the generic number,

o the number of geometrically isolated (nonsingular, respectively) possibly physical
solutions is bounded above by the generic number.

In Section 4, we summarize the result of applying the method of the generic case to the IPP
system developed in Section 2. In Appendix A we do this for the formulation of the IPP from Ref.
[6]. In both cases a description of the solution set results, including a computational proof that
there are exactly 16 (generic) possibly physical solutions.

3.2. Coefficient-parameter polynomial continuation

Continuation is the process of tracking solutions of a previously solved problem as its parameters
are gradually changed to those of an unsolved target problem of similar form. Such an approach
is particularly effective for solving systems of polynomial equations because of the completeness
of the theory in this case.
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“Polynomial continuation” refers to methods for computing the full set of geometrically isolated
solutions to systems of n polynomial equations in # unknowns using numerical continuation (path
tracking) techniques. Polynomial continuation consists of two parts:

(1) defining the continuation system,
and
(2) numerically computing the resulting continuation paths.

We are focusing here on Part 1. Part 2 is important, but reliable techniques of polynomial
path tracking are available and they need not be customized to the specific problem being solved.
Several approaches are surveyed in Refs [16, 17], although we favor the predictor-corrector
technique described in Ref. [17, Chap. 4] because it is customized to polynomial paths. See
Ref. [18].

We use a theory of polynomial continuation called coefficient-parameter continuation, which we
will outline briefly here. An elementary overview of polynomial continuation is given in Ref. {17],
while Refs [18-21] summarize a number of recent developments. The theory of coefficient-
parameter polynomial continuation is precisely developed in Ref. [14].

Consider a family of a polynomial systems of the form of equation (17). Suppose we let the
parameters g be continuous functions of a dummy parameter ¢. Then the solutions of equation (17)
will vary continuously with ¢. The continuation method consists of tracking solutions from an
initial set of parameters g, for which the solutions are known, to a target set q,. (These “tracked
solutions™ are called continuation paths.) Typically, we choose parameter formulas to be simple
linear interpolation, such as

H(w, t) = F(c[(l = t)qy + 1q,]. w). (18)

where ¢ increases from 0 to 1. We call this a coefficient -parameter continuation to distinguish it from
coefficient continuation, in which the coefficients are interpolated directly. H(w, 0) is the start system
and H(w. 1) is the target system. The continuation paths are collectively the solutions to H(w, r) =0
for0<: <1

Now we proceed as follows: we wish to construct a computer code to solve equation (17) for
any choice of ¢ = g,. We are interested in only the possibly physical solutions. Associated with
equation (17) is a system of side conditions s(c[gq], w) =0 that picks out solutions that are not
possibly physical, as discussed in Section 2.1. The first step of our technique is to choose g, from
Q at random, and solvet F(c[¢,]. w)=0.

We discard the solutions that satisfy s(g,, w) =0 and save the rest. (For the IPP formulation
given in Section 2, this amounts to discarding the solutions at infinity.) The solutions we have saved
are the start points. Then we define the continuation system H(w, t) by condition (18). (There are
a number of alternative ways to set up H, described in Refs [14, 21]. Note that here g, consists of
random complex numbers.) Each start point is a solution to the start system H(w,0)=0.

In the second step of the methodology, we proceed, for any choice of g,, to track the continuation
paths defined by equation (18) as ¢ goes from 0 to 1, beginning at each start point. The endpoints
of these paths will include all the (geometrically isolated) possibly physical solutions of the target
system.

Since the first step (solving a random problem) is done only once, a moderately large degree
system can be tolerated. For many problems in kinematics, we can expect the number of possibly
physical solutions to be only a small fraction of the total, so that the computation cost in the second
step will be significantly reduced over the first. See Section 4.

4. NUMERICAL RESULTS
The continuation system we use is equation (18) from Section 3, where F is defined by equations
(14)~(16) and the parameters g are the 20 constants ¢, for i = 1-5, ¢,, for i = 1-5, d,, for i = 2-5,
z,. and p (these last two accounting for three parameters each). respectively. Note that these are

tA traditional continuation method can be used, for which published computer codes are available: for example,
CONSOLST from Ref. (17) or POLSYS/HOMPACK from Ref. [16].
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Table 1. Random coefficients for the IPP2 start system

Parameter Real Part Imaginary Part
o 0.642935654806024D + 0 0.819355356316414D + 0
= 0.266880023988051D + 0 0.452565255665832D + 0
€ 0.264255517449783D + 0 0.342483846503455D + 0
€a 0.126010863921692D + 0 0.864590917688474D + 0
cs 0.179560356711590D + 0 0.870916656600457D + 0
L 0.496254299763677D + 0 0.546020011741348D + 0
ez 0.958341609741183D + 0 0.847442419999425D + 0
e 0.964759562277322D + 0 0.713970745189727D + 0
e 0.706319991204509D + 0 0.120097702052590D + 0
es 0.482079337580217D + 0 0.307430483491771D + 0
dy 0.984138451804029D + 0 0.414967172346223D + 0
dy 0.353268870498141D + 0 0.389909226887539D + 0
dy 0.204379350350791D + 0 0.374294529683539D - 2
dy 0.907681632783351D + 0 0.405209293447115D + 0
61 0.352598136811139D + 0 0.116888144319091D + 0
26,2 0.539042485524988D + 0 0.687058436891675D + 0
26,3 0.391154215376446D + 0 0.128900893181708D + 0
Pe.x 0.437312713587744D + 0 0.914780691357009D + 0
Pea 0.719086796332704D + 0 0.691791591267247D + 0
Pe.s 0.941279842398217D + 0 0.903185535898956D - 01
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The “D™ indicates powers of 10. Thus
0.374294529683539D -2

denotes
0.374294529683539 x 107,

not the “natural” parameters of the problem, which are q,. d,, «,. p. x;, and z,. Instead, the
parameters we choose are derived from the natural parameters by the simple formulas given in
Section 2.

The start system parameters g, were chosen as random complex numbers (given in Table 1). This
implcments the “method of the generic case”, discussed in Section 3. We solved this randomly
chosen start system using a two-homogeneous version of the CONSOLST code from Ref. [17]. (Sce
Refs [7, 8. 19, 21] for a discussion of the two-homogencous approach.) Since the two-homogencous
Bezout number of the system is 320, we therefore tracked 320 paths for this computation. [We could
have used a more traditional one-homogeneous code (e.g. the original CONSOLST), in which case
we would have had to have tracked 1024 paths, the total degree number.] The run took about
30 min of CPU time on an [BM 370-3090 in double precision FORTRAN., In this case, being at
infinity rules out a solution as being possibly physical.t Of the 320 continuation path endpoints
yiclding solutions to this sytem, only 16 were finite (i.e. not at infinity). Therefore, the IPP system
has no more than 16 finite (geometrically isolated) solutions for any choice of parameters. This
computation amounts to a new proof of this important result. Aside from this theoretical result,
we have used this computation to construct a continuation computer code to solve the IPP.

Thus, defining the continuation system by condition (18) and using as start points the 16 finite
solutions discovered in the computation discussed above, we can solve any IPP problem (defined
by a choice of ¢,) by path tracking the associated 16 paths. [As noted in Section 2, if any twist
angle equals zero, we must use a modification of equations (14)(16). See Appendix B.] We used
the predictor-corrector path tracker from CONSOLST [17] to compute the continuation paths. We
call the resulting method [PP2.

To test IPP2 we solved a collection of test problems (in five parts, as described below) and
compared the results to the IPP1-64 method from Ref. [8). [PP1-64 is discussed in Appendix B.
We give both CPU and NFE values in Table 2. CPU denotes seconds of CPU time on an [BM
370-3090 using double precision FORTRAN with the OPT(3) option. The CPU values, although
of interest, should be viewed with some suspicion. They vary because of the time-sharing
environment and other factors. (We experienced timer variations of several tenths of a second in
rerunning sample problems.) The NFE value denotes “number of function evaluations™. For the
path tracker we are using, this is the number of function and Jacobian matrix evaluations and also
the number of linear systems solved. Thus, it is a fairly good representation of the total

tTo implement the two-homogeneous presentation of our system, we must divide the variables into two groups; in this
casc. z;.2, and {z,.z.}. The side condition is w,,w,, = 0, where w,, represents the homogeneous coordinate for the
jth group.

MMT 26 1--G
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Table 2. Run statistics for problem sets solved with
IPP 1-64 and IPP2 (see Section 4)

Prob. IPP1-64 PP2
NFE  CPU (s) NFE  CPU (s)
1 16359 20.3 4995 8.0
2 18766 228 8262 13.0
3 20142 244 13078 205
4 24666 304 8402 13.3
5 24665 305 8368 134
6 18000 222 8087 130
7 15067 19.0 5032 8.1
8 14996 186 5033 8.1
9 14719 182 4977 80
10 14250 17.7 5251 8.5
1 13686 17.2 5512 89
12 14934 186 6149 98
13 13766 16.7 3418 56
14 13847 17.3 4061 6.5
15 13268 164 4057 6.6
16 15930 19.6 4756 76
17 18787 23.1 5444 86
18 20369 4.6 5639 89
19 22395 27.1 7857 12.3
20 21307 255 5949 93
21 14204 175 5250 84
22 13842 170 4946 8.0
23 14250 17.6 5077 82
24 14142 17.1 5026 8.2
25 13280 16.1 5172 84
26 13321 16.2 4504 73
27 14099 17.1 4698 73
28 14818 180 4912 8.0
29 14500 176 4189 6.9
30 14486 17.8 4130 68
3l 15600 189 4145 6.8
32 15461 187 4612 5
33 15216 18.4 4424 7.2
34 15565 18.8 3883 65
35 149011 18.0 3650 6.0
36 13377 18.6 3589 5.9
37 15450 18.8 3624 59
38 16308 198 3651 60
39 16607 20.2 37139 6.1
40 16139 19.6 4077 6.6
41 16384 199 4172 6.8

computational work; it subsumes the amount of algebra needed to evaluate the system (and its
partial derivatives) and to solve the linear systems (via Gaussian elimination). It is generally
proportional to the CPU timings for comparisons of the same method on different problems.

However, in comparing IPP1-64 and IPP2, the NFE values are not comparable without making
adjustments based on the following facts: The IPP1-64 system consists of eight equations, while
the IPP2 systems consists of 11 (thus, the one does 8 x 8 linear algebra, the other 1l x 11). On
the other hand, IPP1-64 requires more algebra for each function and Jacobian matrix evaluation
than IPP2 (thus, the “sparcity” of the IPP2 system referenced in Section 2). In fact, on the problems
we tested, [PP1-64 averaged about 815 function evaluations per second, and IPP2 about 630. Thus,
IPP2 takes about 1.3 times longer per function evaluation than IPP1-64. In addition, the different
structures of the models yield computational differences, the principle being:

(1) The IPP2 mode! becomes more and more ill-conditioned as twist angles are
chosen closer and closer to zero. This is not the case for IPP1-64. which, in fact,
allows zero twist angles,

and
(2) IPP2 tracks only 16 paths, while IPP1-64 tracks 64.

Typically. the ratio of 4 to 1 paths gives IPP2 a considerable edge over IPP1-64. It is generally
2 to 3 times faster. On the other hand, on problems with nearly zero twist angles, the two codes
can run at almost the same speed. In practice, one would run the alternative version of IPP2 noted
in Appendix B when twist angles are zero, but these tests measure the sensitivity of the code to
this factor. The reliability and accuracy of both programs is excellent. Each program found all
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geometrically isolated solutions to all problems. However, this reliability is strongly a function of
the choice of path tracker, and we have chosen one which is less sensitive to ill-conditioned
problems. (Note Ref. [18] on this important issue.)

Now we will describe the five problem sets in detail. All twist angle values given below are in
degrees. The solutions to the first four problem sets are listed in Table 3.

Part 1 consists of Problems 1-3. The first problem (given in Table 4) is a moderately scaled
random manipulator with a moderate random hand position and orientation. It provides a nominal
start problem for this series of three. The second problem is identical to the first, except that the
second and fourth twist angles are changed to 1° and 359°, respectively. The third problem is
identical to the first, except that these angles are changed to 0.1° and 359.9°, respectively. This series
is designed to quantify the nominal performance of IPP2 and then the degradation in performance
caused by nearly zero twist angles. The IPP1-64 performance provides a control, since this code
is not sensitive to nearly zero twist angles. All runs produced the correct two real solutions, but
the computational work increases dramatically for IPP2 from Problem 1-3. The ratio of NFE’s
is 2.6 from Problem 1-3 for IPP2, while, for [PP1-64, this ratio is only 1.2. In comparing the CPU
values for IPP1-64 and IPP2, we see that IPP2 is 2.5 times faster for the first problem, but only
1.14 times faster for the third.

Part 2 consists of Problems 4 and 5. These problems show the increased challenge of solving the
IPP when the manipulator is near the boundary of its reachable area. Table 5 gives the Problem
4 data. This problem has two real solutions. Problem $S is the same as Problem 4, except that the
first three link lengths have been rounded to four digits from six digits. (Precisely, the rounded link
lengths are a,=0.123D +3,4,=0.1426D +3 and a,=0.1625D +3.) The run statistics are
virtually identical, but this problem has four real solutions. We observe that Problem 4 has a
complex pair of solutions with small imaginary parts (on the order of 10-2). This complex pair
resolves into a pair of (ill-conditioned) real solutions under the perturbation of the polynomial
system that results from rounding the first three link lengths to four digits. This pair of problems
points out several subtleties:

1. The “nearly real™ pair of solutions to Problem 4 indicates that the manipulator
could almost (but not quite) attain the specified hand position and orientation
with an additional pair of configurations. A user might want to be informed of
this fact, which would be signaled by a display of the magnitudes of the imaginary
parts of the complex solutions. Thus, knowing the complex solutions yields
physical information.

. Hl-conditioned endpoints can occur for physically meaningful solutions, and the
path tracker must be able to deal with them.

(]

Part 3 consists of Problem 6-12. These are variations of the example of Manseur and Doty [12]
that gives 16 real solutions to the IPP. In fact, Problems 6-9 have this property, and then Problems
10-12 have 8, 4 and 0 real solutions, respectively. Problem 6 is defined in Table 6. It is identical
with the Manseur and Doty example, except that their three zero twist angles have been replaced
by | angles. In Problem 7, these 1 angles are replaced by 10° angles. Keeping the twist angles
fixed as in Problem 7, the rest of the problems in this set replace each of the manipulator parameters
that have the value of 0.0 with larger and larger values; namely, 0.01, 0.1, 0.3, 0.5 and 1.0 in
Problems 8-12, respectively. Of interest is the persistence (and finally, degradation) of the **16 real
solutions™ property under greater and greater perturbations, and the stabilizing of the IPP2 run
statistics as soon as the twist angles become larger than 1°.

Part 4 consists of Problems 13-20. It explores how increasingly severe singularities due to special
hand positions and orientations affect the performance of the solvers. Problem 13 is a moderate
problem, the manipulator from the second example of Ref. [6], with a randomly chosen hand
position and orientation (Table 7). For Problems 14-16 this same manipulator is solved using a
hand position and orientation that forces (6,, 8, 8, 6,) to include at least one solution with values
(0,0,0.0), (180, 180, 0, 0) and (180, 180, 180, 180), respectively (Table 8). Thus at least one singular
solution occurs. In fact, Problems 14 and 15 include two singular endpoints and Problem 16 has
three. Compare. in particular, the NFE values for Problem 16 with those of Problems 14 and 15
(in Table 2). To “make matters worse™ for Problem 17, we set all the offsets (d,) equal to zero,



Table 3. Real

solutions to the test problems M for j=1-6, in

degrees)

Prob. 8, 8, N 0, A s
1 -98.3580 -162.6711 76.6759 -5.5721 73.4399 39.0772
-118.1634 134.1567  156.0316 -12.2721 84.8259 43.4999
2 -94.0000  -174.0000 79.0000 11.0000 67.0000 33.0000
-113.8130 751231 -153.5567 2.6442 77.2033 26.6143
3 -93.4624  -174.4208 78.3077 13.0225 66.0180 32.4839
-113.3878 68.5254¢ -147.5634 2.6050 77.0359 25.0332
4 143.0000 0.9883 -0.0059 0.1527  167.0000 53.0000
144.3383 -0.9370 0.1002 0.5868 . 166.5701 53.0388
3 142.4743 1.7446 -0.0475 -0.0239  167.1868 53.0011
144.8641 -1.6935 0.1420 0.7517  166.4180 53.0695
142.8577 1.0848 0.1358 -8.8051  -167.0113 76.7711
144.4604 -1.2252 0.2690 -8.6323  -166.5008 T7.7587
6 2.5172 108.0759  112.0431 -10.5230 0.0051 -0.1095
2.5172 108.0759  -67.9569 -169.4770  179.9949 179.8005
88.6785 -176.7247 3.27909  -116.7581 22.5041 -39.5633
88.6785 -176.7247 -176.7291 -63.2419  157.1959 140.4367
168.3219  -103.8922  146.6038 -17.2409  -171.8792 98.1651
168.3219  -103.8922 -33.3962  -162.7591 -8.1208 -81.8349
113.8436 5.3064 22557  -124.0758  -117.0152 136.6227
113.8436 53064 -177.7443 -55.9242  .62.9848 -43.3773
-12.9429  -105.0963 65.0246 1769766  172.5830 100.5782
-12.9429  -1056.0963 -114.9754 3.0234 7.4170 -19.4218
-96.2845 -6.2736  179.9689 J8.4860 52.5499 -39.4047
-96.2845 -6.2736 -0.0311  141.5140 127.4501 140.5953
-120.7884 172.3344 0.9272  148.6680  -33.2848 -37.1791
-120.7884 172.3344  -179.0728 31.3320 1467152 142.8209
-178.1262  108.1916 32,2662  -174.3067 15,3204 -0.4195
-178.1262 108.1916  -147.7338 -5.6933 - 16:4.6746 179.5805
7 23.3264 1134406 112.1746 -34.9459 04566 -1.0267
23.3264 113.4456 67.8204 - 145.05:41 1795434 178.9733
88.9601 176.2877 17.8067  118.4329 281414 351583
88.9601  -176.2877 -162.1933 -61.5671 151. 8086 LEbR4LT
113.7476 9.7132 13.8371 1253720 1234263 129.5092
113.7476 9.7132 - 166.1629 -54.6280 56.5737 50.4908
165.3442  -101.2557 147.9020 244507 1792226 97.8675
165.3442  -101.2557 -32.0980  -155.5493 0.7774 -82.1325
-21.9930  -101.7730 59.6376  162.4936  163.5698 100.5588
-21.9930  -101.7730  -120.3624 17.5064 16.4302 79.4412
-96.2859 -11.1618  172.0617 37.9273 58.09538 -37.0103
-06.2859 -11.1618 -T.0383 1420727 121.0042 142.9807
-121.2563 1652800  175.7050 31.0083 -152.2889 145.3650
-121.2563  165.2800 -4.2050 1489917 -27.7111 -34.6350
-161.3488 115.0559 254373 169.1701 -15.4092 -4.4428
-161.3488 1150559  -154.5627 10.8299 -164.5908 175.5572
8 22.4916 1120565  114.1508 -33.9243 0.2336 0.3106
23.8236 1148123  -69.3955 -144.3878  179.5534 178.7418
88.8581 -177.3825 -161.0037 -62.6399  153.0120 144.9976
89.7344  -174.8276 16.2300 -118.9962 28.2052 -35.3762
164.9044 -101.7499  -32.3602 -134.6302 0.2461 -81.1792
165.8229 -101.8299  149.0939 -24.9005 -179.8072 97.3188
113.8852 8.5343 -165.0086 -54.3520  -56.7753 -50.4638
115.2645 10.4586 13.4153  -125.1292  .122.1107 129.0219
-21.2557  -102.3271 59.2809 163.0431  163.6912 99.5142
-22.6369 -99.5565 -121.3900 17.6573 16.7902 -78.1195
-94.1474 -13.0521  174.233G 36.9809 57.3119 -37.5845
-95.8677 -10.3109 -8.7075 1424922 122.0354 142.8451
-121.8303  166.2178 5.1467  150.7T160  -28.7019 -34.2967
-122.0697  163.8500  177.1279 30.1500  -151.9834 145.6911
-160.8461 115.4933  -154.2453 104749  -163.7822 174.8222
-162.0129 115.0121 24.7543  170.7711 -16.3489 -3.3858
9 16.8717 98.2050  131.5822 -26.4830 -1.3744 4.2524
30.4278 127.2051 85.2021 -138.4371  179.3597 174.7179
84.8749  171.6077 -148.7803 -75.1136 163.3560 147.3729
98.3927 -161.2939 1.7567 -123.1325 26.2868 -37.8298
114.3602 -2.0962  -154.7715 -52.0886  -57.6938 -49.8448
128.4112 17.9808 9.5063 -123.4288 -110.3114 124.1456
159.9762 -106.7078  -34.53G5  -146.0969 -3.8597 -72.1292
169.6530 -107.1256  109.9721 -20.4477  -170.9979 92,4108
-15.1681  -106.8375 54.7481 167.5683  164.5775 89.4197
-33.1818 -73.2506  -134.9465 19.6907 23.2223 63.2920
-67.4887 -34.6633 -163.0851 27.8066 11647 51417
-92.0356 -2.6492 -15.7344 145.9543 123 5967 114979
-125.3293 175.5695 -13.6M46  164.8421 -37.7510 31.9035
-132.1602 148.6549  -168.6365 20.8289  -150.0833 1302847
-154.3574 1219345 -152.8378 96291 -156.1923 1666609
-167.7599 112.5338 191076 175.5007 24.6721 T O5OR

—continued opposite
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Table 3—continued

10 14.6997 51.2019 173.1827  -15.6332 -4.5602 -0.4541
102.1531 -25.5049 -134.1903  -44.2042  -50.3553 -43.8796
156.2957 43.8474 1.3873 -123.9633  -82.1190 104.0899
176.2835 -118.5406 -174.7523  -42.5474¢ -150.3013 80.2031
179.5357 91.5570 6.7962 -146.1939  -46.9120 46.3374

-4.1009 -110.3949 33.8088 175.3863  165.7201 62.8124
-82.4338 14.8241  -32.5608  151.9686  129.8160 137.8728
-129.6185 -159.9117  -36.2711 -167.1353  -57.7226 -27.8057

11 3.0460  -99.7140 -1.1005  179.5759  167.8233 38.3513
-69.1949 34.1054  -53.1396  156.7353  140.8344 132.0347
-146.0495 -134.7539  -65.9888 -131.8841  -74.1285 -15.8973
-177.3113  -126.9879  -144.1177  -61.9760 -125.1324 59.5309

12 No real  solutions.

13 1.3571 21.8656 49.5020 -135.3516  177.2369 118.2644
22.0000 11.0000 73.0000  -86.0000 -163.0000 67.0000
22,2259  -83.0189 -155.8732  -64.4355 79.3048 138.8233
33.3157 9.1797 89.1082  -68.5013 -154.5087 $2.2032
55.8623  -13.4494 -143.17T30 -142.0105 . 63.7681 157.7112

122.3995  125.6131 571077  -64.9907 7.7464 103.8062

14 13.2851 12.5493 -1.3806 28.9590 8.8568 80.5781
22.0000 0.0000 0.0000 0.0000 0.0000 67.0000¢
90.3382 -8.8447 1112940 23.9813 28.5286 46.5138

15 10.0457 -4.7161 26.5377 17.7366  -146.0340 -97.1835
22.0000  180.0000 -180.0000 0.0000 0.0000 67.0000¢
36.6812 92.1914  -149.8650  125.9562 6.5082 100.1607
42.7762 -3.1257 89.7629 32.1047 -129.8878 -77.3090
82,7315  162.1436 98.7035  -37.1989  -28.1860 56.7000

16 22,0000 1799997  179.9999 -180.0000 -179.9999 67.00031
57.5074 -32.4328  -168.7493 90.0807 138.4922 -15.6728
141.6415  143.6943 0.2070 17.2663  126.8306 158.5497
-53.9826 -40.6097  -42.2725  -79.6420 78.0916 -9.2603

17 22.0000 0.0000 0.0000 0.0000 0.0000 67.0000§
18 22.0000 0.0000 0.0000 0.0000 0.0000 67.00008

19 22.0000 0.0000  180.0000 0.0000 0.0000 67.0000§
22.0000  180.0000 0.0000 0.0000  -180.0000  -113.00008

20 No geometrically isoluted renl solutions,

+Multiplicity two. $Multiplicity three. §Multiplicity four.

and generated a hand position and orientation yielding a solution with theta values (0, 0, 0, 0). (The
hand positions and orientations for Problems 17-20 are given in Table 9.) Then in Problem 18 we
set all the link lengths equal to 0.45 and otherwise the parameters are as in Problem 17. In Problem
19 the hand position and orientation for this last manipulator was chosen with one theta set equal
to (0,180,0,0), and finally for Problem 20 the same manipulator with theta set equal to
(180, 180, 180, 180). For Problems 17 and 18 the number of continuation paths with singular
endpoints is 8, for Problems 19 and 20 it is 12. Problem 20 is particularly degenerate. It possesses
no real geometrically isolated solutions at all! It has exactly two complex pairs of geometrically

Table 4. Problem |

Manipulator parameters a, d, and a (i.e., the firat row gives a, for j = 1 to 6, the sccond
row d, for j = 1 to 8, and the last row a, for j =1 to 6):

0.7530D +0 0.2190D +0 0.4320D+0 0.3430D+0 04310D+0 0.6420D +0
0.7550D +0 09320D+0 0G530D+0 0.3380D+0 0.1280D+0 0.5260D +0
0.2200D +2 0.1000D +2 0.7000D +2 0.3490D +3 0.8800D +2 0.2600D + 2
Hand ponition:

~-0.233420031755010D + 1 0.216941600256900D + 0 0.277358043344060D + 1

Hand orientation matrix:

-0.454444346162680D + 0 —0.458410443991960D -~ 1  -0.889594815004450D + 0

0.260250280436430D + 0 0.948260069850210D + 0  -0.181811888220130D + 0
0.851000694608040D + 0  -0.314140684747780D + 0  ~0.419005372780620D + 0
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Table 5. Probiem 4

M;nipuhwrpan.mema,d,nda(i.e..theﬁmmg'vua,forj=lto6,the¢cond
row d, for j =1 to 6, and the last row a; for j = 1 to 6):

0.123366D + 3 0.142564D +3 0.162544D + 3 0.343000D +0 0.789300D + 0 0.123000D + 0
0.968500D + 0 0.563000D +0 0.190000D + 0 0.163000D +0 0.100000D + 0 0.876000D + 0
0.100000D + 1 0.350000D +2 0.200000D + 2 0.660000D + 2 0.160000D + 3 0.370000D + 2

Hand position:

~0.34499607188930D +3  0.25338291709575D + 3 0.27112740408867D + 1
Hand orientation matrix:

0.74470324934565D +0  —0.66674687490185D + 0 -0.29422359229639D — 1

0.31353420472692D + 0 0.38842979699426D + 0  —0.86649789109568D + 0
0.58916328201975D + 0 0.63605887904785D + 0 0.49831288314081D + 0

Table 6. Problem 6

Manipulator parameters a, d, and a (i.e., the first row gives a; for j = 1 to 6, the second
row d, for j = 1 to 6, and the last row a, for j = 1 to 6):

0.30D+00 0.10D+01 0.00D+00 0.15D+01 0.00D+00 0.00D+00
0.00D+00 000D+00 0.20D+00 0.00D+00 0.00D+00 0.00D+00
0.90D +02 0.10D+0t 090D +02 0.10D+01 090D +02 0.10D +01

Hand position:

~0.1140175D + 01  0.0000D + 00  0.0000D + 0G0
Hand orientation matrix:

~0.760117D + 00 ~0.641689D + 00 0.102262D + 00

0.133333D + 00 0.000000D + 00 0.991071D + 00
-0.635959D + 00 0.766965D + 00  0.835580D ~ 01

Table 7. Problem 13

Manipulator parameters g, d, and a (i.c., the first row gives g, for j = 1 to 6, the sccond
row d, for j = 1 to 6, and the lnst row a, for j =1 to 6):

045D +0 035D +0 075D+0 0.75D+0 055D +0 0.45D+0
0.50D+0 060D+0 040D +0 0.10D+1 040D+0 060D+0
080D +2 093D+2 0.12D+3 0.12D+3 093D+2 080D+2

Hand position:

0.16829945912573D + !  0.48415813071319D +0  0.82083875430520D + 0
Hand orientation mutrix:

-0.58314721777709D + 0  0.18785983973287D +0  0.79034676124748D + 0

0.39371509906310D + 0 0.91635422339387D + 0 0.72686711563778D - 1
~0.71058267862971D + 0 0.35355850701653D + 0  —0.60833267128083D + 0

isolated solutions. The rest of the solutions are included in positive-dimensional solution sets.
However, some of these include real (and thus physical) solutions.] The path tracker abandoned
some paths near their endpoints, due to the high degree of singularity, which is why Problem 20
is solved in less time than Problem 19. The program reports *‘no solutions™ for this last problem,
which we believe is sensible for such a degenerate case.

Part 5 is taken from Ref. [10], where the problems and their solutions are given in Table 1 (10
problems) and Table 2 (11 problems) of that reference. (The Table | problems are taken from Ref.
[4].) We have numbered these as Problems 21-30 and 3141, respectively. In Table 2, we include
our run statistics. No run statistics are given in Refs [4, 10].+

+For methods involving reduction computations, the total CPU cost would include the cost of generating the polynqmial
to be solved. the cost of solving the polynomial. and the cost of back substituting to generate the pigysncal sqluuons.
The need for very high precision to assure the numerical stability of the elimination process can significantly increase
the CPU cost.
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Problem 14 hand otientation matrix:

0.64815428818396D +0  0.79161767330574D — 01 0.75738328031375D + 0
-0.56119424077973D + 0 —0.62263053294554D + 0 0.54533681661851D + 0
0.51473978166099D + 0 —0.77850153117194D + 0  ~0.35913552196705D + 0

Problem 15 hand position:

Problem 15 hand orientation matrix:

0.98126643087233D —~ 1  —0.40480958842247D + 0  0.90912065152963D + 0
0.80017195261471D + 0 0.57524060710887D 4+ 0 0.16977364395507D + 0
-0.59168911445555D + 0 0.71079352913082D + 0 0.38036370854822D + 0

Problem 16 hand position:

0.12868352974634D + 1  -0.15143991415139D + 1 0.16034363026702D + 1
Problem 16 hand orientation matrix:

0.30240098111430D +0  0.21069244605705D + 0 0.92960332389445D + 0

0.29457522407360D + 0 —0.94818038668236D + 0 0.11907725086208D + 0
0.90652031636533D + 0 0.23782902994669D + 0 —0.34879545371395D + 0

Table 9. Hand positions and orientations for Problems 17 -20

Problem 17 hand position:
0.31195801861115D + 1 0.89001270156765D + 0 0.23163290174744D + 0
Problem 17 hand orientation matrix:

0.64815428818396D + 0 0.79161767330574D ~ 1 0.75738328031575D + 0

~-0.56119424077973D + 0  -0.62263053294554D + 0 0.54533681661851D + 0
0.51473978166099D + 0 —0.77850153117194D + 0 ~0.35913552196705D + 0

Problem 18 hand position:
0.23778331024581D + 1 0.59032742683492D + 0 0.23163290174744D + 0
Problem 18 hand orientation matrix:

0.64815428818396D + 0 0.79161767330574D — 1 0.75738328031575D + 0

-0.56119424077973D + 0 -0.62263053294554D + 0 0.54533681661851D + 0
0.51473978166099D + 0  -0.77850153117194D + 0  ~0.35913552196705D + 0

Peoblem 19 hand position:

-0.72607275531045D + 0 0.1264G6314554293D + 0 0.14167404083940D + 0
Problem 19 hand orientation matrix:

-0.68631115723422D +0  —0.18558900060193D -2  ~0.72730567929020D + 0

0.65563580573354D + 0 0.43129177251048D + 0 -0.61978149149914D + 0
0.31483120190978D +0  -0.90221059771914D + 0  -0.29478356749881D + ¢

Problem 20 hand position:

0.55331317605619D + 0  0.30113181787028D + 0 0.4079341423G440D + 0
Problem 20 hand orientation matrix:

0302400981 1 1430D + 0 0.21069244605705D + 0 0.92960332389445D + 0

0.20457522407360D + 0 -0.94818038G68236D + 0 0.11907725086208D + 0
0.90652031636533D + 0 0.237820029946690 + 0 -0.34879545371395D + 0
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5. SUMMARY AND CONCLUSIONS

In this paper we present a new model for the 6R inverse position problem (in Section 2) and
define a solution approach based on polynomial continuation (in Section 4). The new model
assumes that twist angles are not zero, but a modification is given in Appendix B which covers
the zero twist angle cases. We report on testing the resulting 16 path continuation method on 41
test problems and include for comparison the outcome of testing a 64 path continuation method
from Ref. {8] on the same problem set (Section 4). In Section 3 we outline the theoretical basis
for our numerical technique: the method of the generic case and coefficient-parameter polynomial
continuation.

We conclude:

1. The new approach is reliable on problems with twist angles of at least 1/10". CPU
times vary in our tests from 5.9 to 20.5s. The average time is less than 10s. This
compares with cpu times varying from 16.1 to 30.5 with an average less than 20 s
for the method from Ref. [8].

The methodology of the approach is applicable to any polynomial system and is
potentially a very powerful tool for the analysis and solution of systems of
polynomials that arise in kinematics.

o
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APPENDIX A

The IPP1 Model
In this Appendix we outline the IPP 1-64 method for solving the 6R inverse position problem. This method was introduced
in Refs [7. 8] as an example of the m-homogeneous approach to polynomial continuation. IPP1-64 is an improvement of
the method proposed in Ref. [6].
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In Ref. [6], the 6R problem is reduced to solving a system of cight second-degree equations in eight unknowns of the
following form (see also Ref. [17, Chap. 10]):

Fi=a, wywy+a W we+ a3w,wy + a,, W, W,
+ L WeWy A WWy + B g W Wy + T g W Wy
+aw) + 0wy +a, Wy +d; 3 W, (A.D
+a,)3Ws +3,,,We + ) sWr + a6
+a,; ((=1,....4).
Fi=wh_o+wlh_y=1 (I=5.....8),

where the coefficients a,, are given by the manipulator parameters. The total degree of this sytem is 256, and therefore a
traditional (one-homogeneous) polynomial continuation method must track 256 paths to solve the system. This was
implemented in Ref. [6]. However, by grouping the variables into the two groups:

{wiowzowsowe} {wy, we we wyl,

the resulting two-homogeneous structure yields a Bezout number of 96. We further observe that there are eight
multiplicity-four fixed solutions to this two-homogeneous system (that do not depend on the choice of parameters). This
is proven as Theorem 4 in Ref. [8]. Thus, as discussed in Ref. [8]), we may set up a continuation with only 64 paths. In
fact, we use a continuation system of the form

H(w, t)=(1 = t)yG(w) + tF(w),

in which the start system G is the second example in [6] and y is a randomly chosen complex number.
The 64 paths are tracked using the method from Ref. {17, Chap. 4) (the CONSOLS path tracker). The 64 endpoints are
64 solutions to (A.1), which for generic choices of parameters partition into four groups of 16 each, as follows:

(1) 16 finite solutions to the 6R problem,

(2) 16 finite extraneous solutions,

(3) 16 solutions at infinity to the 6R problem
and

(4) 16 extrancous solutions at infinity.

This is established by solving equation (A.1) for a random choice of parameters and evoking the method of the generic
case. This generic system is solved using a modification of the code used to accomplish the analogous purpose for IPP2.
(Sce Section 4.)

Thus, for this model, our use of side conditions in evoking the method of the generic case is a little more complicated
than in Section 4. First, we have side conditions that pick our possibly physical solutions; specifically, these side conditions
are the equations of the original unreduced IPP system. Solutions to equation (A.1) that do not satisfy these equations
are called “extrancous™. Then, we have side conditions that rule out solutions being possibly physical; specifically, the
cequations that fix a solution at infinity. The IPP2 analysis required only this second type of side condition. (See Refs [14, 21]
for more on the way side conditions can be used.) The result is that the 64 path endpoints can be partitioned generically
into four sets of 16, as above.

IPP1-64 solves the problems from Section 4 in CPU times ranging from 16.1 to 30.5 s. The CPU times reported in Ref.
[6] (for three other problems) range from 212.363 to 266.513 s. We would generally expect IPP1-64 to outperform the Ref.
{6) method, since it tracks a quarter of the paths and there is no reason to think it would be less reliable.

APPENDIX B

Parallel Joints

If one or more of the joint twists is 0 or 180, then the corresponding e, = a,/sin 2, is undefined and the reduction to
cequations (14-16) is illegal. Moreover. for very small sin a,, the system will be ill-conditioned. (For quantitative information
on this, see the experimental results in Section 4.) To avoid the difficulty, we retain x, ,, as a variable and eliminate z, , ,
instead using the relation

T, = —SIN2Z XX, +COSA2Z,.
To avoid increasing the degree, we introduce a new variable
=z oxx,,,.
so that

2y, = =SiNAV +COSX, 3. X, =V, X3, (8.1

Now, we write the system as
zog,=1 i#kk+1l, vv=I,
2,°2,,=c i#*k, v -2,=0

Y dz+ez, xz,, ) +dz +av, xz,=p
I/ 8
rok

where equation (B.1) is used everywhere z, ., appears.
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SOLUTION DU PROBLEME DE LA POSITION INVERSE POUR
MANIPULATEURS A SIX JOINTS ROTATOIRES UTILISANT LA
“METHODE DU CAS GENERIQUE”

Résumé—Dans cet article on considére le calcul de toutes les solutions du probleme de la position inverse
pour manipulateurs généraux a six joints rotatoires. Au lieu de réduire le probléme i@ une équation trés
complexe d'entrée—sortie, on travaille avec un systéme de 11 équations polynomiales simples. En dépit du
fait que le degré total du systéme soit trés élevé (1024), en utilisant la “méthode du cas gégérique™ on
montre numeériquement que le nombre générique des solutions est 16, en accord avec les preuves
préalables. En outre, on présente une méthode numeérique, basée sur la continuation des paramétres des
polynomes, qui permet de trouver efficacement toutes les 16 solutions. On présente un ensemble de 41
problémes dans lesquels I'algorithme numérique nécessite en moyenne moins de 10 sec CPU dans un IBM
370-3090 en FORTRAN double précision. Cette méthodologie est également applicable i d autres
problémes de cinématique qui sont aussi formulés en systémes d’équations polyndmiales.



